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Classical planning problems

We typically want to maximize the expected average reward

In planning:
» Model is “known"”

» A single scalar reward

» Rare events (black swans) only crop-up through expectations
» Model may be perturbed

Adversary
Nature
Lack of stationarity

>
[ 4
>
> Estimated from finite data



Motivation example - Mail Catalog

> Mail order retailer
» Marketing problem: send or not send coupon/invitation/mail order catalogue

15, M., D. Simester, P. Sun, and J. N. Tsitsiklis, “Biases and Variance in Value Function. Estimates,”
Management Science 53(2):308-322, 2007.
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Motivation example - Mail Catalog

> Mail order retailer
» Marketing problem: send or not send coupon/invitation/mail order catalogue

» Common wisdom: per customer look at RFM:
Recency, Frequency, Monetary value

» Dynamics matter
» Every model will be “wrong:" how do you model humans?

15, M., D. Simester, P. Sun, and J. N. Tsitsiklis, “Biases and Variance in Value Function. Estimates,”
Management Science 53(2):308-322, 2007.



Mail Catalog Case Study

» Data: a data set with complete transaction histories of 1.72 million customers for a
six-year period is given.
» An MDP is constructed as follows:

> State: RFM, each quantized into four discrete levels, leading to a state space S with
43 = 64 states.

> Action: either mail or not mail to the customer.

> Objective: to maximize its expected total discounted profits.

> Reward: the purchase amount (if any) minus the mailing cost.



Mail Catalog Case Study

» Data: a data set with complete transaction histories of 1.72 million customers for a
six-year period is given.
» An MDP is constructed as follows:

> State: RFM, each quantized into four discrete levels, leading to a state space S with
43 = 64 states.

> Action: either mail or not mail to the customer.

> Objective: to maximize its expected total discounted profits.

> Reward: the purchase amount (if any) minus the mailing cost.

» Thus, each customer’s historical data over time serves as a sample trajectory.

» And the entire dataset of 1.72 million trajectories consists of 164 million
observations, where an “observation” means the state transition in the history of a
customer in one mailing period.



Case study — Impact of parameter uncertainty

» Subsets of the data set are used to estimate the parameters of the MDP. The data
set is randomly divided into 250 equal-sized subsamples, each containing about
657,000 observations.

» In each subsample, the expected reward parameter in each state is estimated using
approximately 10, 000 observations.

» The probability of each feasible transition is estimated using approximately 1400
observations.
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> For the historical policy 7 used by the firm, we have 250 estimate of the value
function.

» For each value function, average across 64 states — average value function (AVF).
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Impact of parameter uncertainty - fixed policy

> For the historical policy 7 used by the firm, we have 250 estimate of the value
function.

» For each value function, average across 64 states — average value function (AVF).
» Ground truth AVF is $28.54.

» The average of the 250 estimates is $28.65 with an empirical standard deviation of
$0.97. The standard deviation of $0.97 shows that the value function estimated from
a subsample may deviate significantly from the true value.

» The 95% confidence interval of the 250 estimate is [$26.59, $30.49], or roughly a
deviation of 14% of the true value.
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» Curse of Optimality: When the policy optimization procedure is involved, the
impact of parameter uncertainty is more severe.
» The entire data set is randomly divided into a calibration sample and a validation
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Impact of parameter uncertainty — “optimal” policy

» Curse of Optimality: When the policy optimization procedure is involved, the
impact of parameter uncertainty is more severe.

» The entire data set is randomly divided into a calibration sample and a validation
sample.

> The calibration sample is used to estimate the model parameter, then giving an
“optimal policy"” .

» We are interested in the bias of the AVF estimate and the suboptimality, of the
“optimal policy”.



Impact of parameter uncertainty — “optimal” policy
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Figure: Left: Bias; Right: Suboptimality.

» Both the bias and suboptimality are significant. For a calibration sample containing
1% data (i.e., 1.6 million observations), the average bias is 6.3% and the derived
policy is 2% worse than the true optimal.
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Common to many problems

v

“Real” state space is huge with lots of uncertainty and parameters

v

Batch data are available
» Operative solution: build a smallish MDP (< 300 states!), solve, apply.

» Computational speed less of an issue

» Uncertainty and risk are THE concern (and cannot be made scalar)
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The Question:

How to optimize when the model is not (fully) known?
But you have some idea on the magnitude of the uncertainty.

= The Robust MDP framework.



Soft Motivation: Statistical Learning

Supervised Learning Problem:
» Training Data: {(x;,y;)}/", generated according to unknown distribution.

» Goal: Find labelling rule £(x) to minimize generalization error:
E[e(x, £(x),y™)]

» Problems: Do not know distribution. Control overfitting.



What is Overfitting? An Example?

We want to find a function to fit these samples.

Fi{><)

! Adapted from http://www.mit.edu/~9.520/Classes/class02.pdf



What is Overfitting? An Example (Cont.)

Suppose this is the true function.
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What is Overfitting? An Example (Cont.)

This is overfitting.

Fi=}




What is Overfitting? An Example (Cont.)

Overfitting solution does not help.

T}
'




Regularization

» Fact 1: Overfitting solutions are unnecessarily complicated.

» Approach 1: Penalizing the complexity of the solution.

m

mgn : Z (x4, L(x3),yi) + C(L).

i=1

v

C(L) is the regularization term. Typically chosen as a norm function.

» Adding apples with oranges.



Robustness

» Fact 2: Overfitting solutions are sensitive to disturbance.



Robustness: an example?

Consider the 10-sample example

?Adapted from http://www.mit.edu/~9.520/Classes/class02.pdf




Robustness: an example (Cont.)

Fitting the samples with

an arbitrary degree polynomial
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Robustness (Cont.)

Perturbing the sample slightly
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Robustness (Cont.)

The solution changes dramatically
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Robustness (Cont.)

Degree-2 polynomial fitting
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Robustness (Cont.)

Not so sensitive to perturbation
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Robustness

» Fact 2: Overfitting solutions are sensitive to disturbance.
» Approach 2: Find a robust (w.r.t. sample perturbation) solution.

» How? Robust Optimization.



Robust Optimization

» General decision problem:
max  u(x,&).
X

» What if £ is unknown?

» noisy/incorrect observations
» estimation from finite samples
» simplification of the problem

» Max-min solution.

max Igrélil u(x,§).



In Supervised Learning: Regularization = Robustness = Generalization

» Approach 1 and Approach 2 are equivalent!

— —

—~ ~ 7 \\
Regularization Robustness >
\\ -~ \ //

-~
-~
~

Desirable
properties

[Every learning algorithm must be robust to generalize]

2H. Xu and S. M., “Robustness and Generalization”, Machine learning 86, 391-423, 2012.



Markov Decision Processes

» Defined by a tuple (T',~,S, A, p,r):

» T is the possibly infinite decision horizon.

> v is the discount factor.

» S is the set of states.

» A is the set of actions.

» p transition probability, in the form of p;(s'|s, a).

» r immediate reward, in the form of (s, a).



Markov Decision Processes

» Total reward is defined:
* R= ZtT=1 Vi (st ar).

» Classical goal: find a policy 7 that maximizes the total reward under 7.
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(a) The uncertainty is represented in a set-inclusive way: there is a set U, known to the
decision maker, such that the true unknown parameter A belongs to U (the uncertainty
set).

(b) The decision is a here and now decision and must “work” for all admissible parameters.
More precisely, x cannot depend on the true value of A.



Robust MDPs & Robust Optimization

» The robust MDP framework is inspired by robust optimization.

» To illustrate, consider a linear program where A are subject to ambiguity:
Minimize:y¢'z  Subject to: Az > b.

» Two central assumptions of the decision model:

(a) The uncertainty is represented in a set-inclusive way: there is a set U, known to the
decision maker, such that the true unknown parameter A belongs to U (the uncertainty
set).

(b) The decision is a here and now decision and must “work” for all admissible parameters.
More precisely, x cannot depend on the true value of A.

» Under these two assumptions, the decision problem can be formulated as the

following robust linear program:

Minimize:,, ez Subject to: Az = b; VAel.
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» S and A are known, p and r are unknown.
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Robust MDPs

» S and A are known, p and r are unknown.

» Set inclusive uncertainty: p and r belong to a known set (“uncertainty set”).

» When in doubt—assume the worst!

Look for a policy with best worst-case performance. Problem becomes:

Maximize:; min ETPT { Z At Ly, St,at)}

(p,r)eld
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Part Two: Extensions

1. Large problems
2. Learning the uncertainty

3. Alternative formulations
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Rectangular uncertainty

Uncertainty uncoupled across different states:
» Whether a parameter of a state s is allowed to take a certain value does not depend

on the parameter value of other states.

Definition 0.1 (Rectangular Uncertainty Set).

A robust MDP problem (7,S,.A,~v,U) has a rectangular uncertainty set if we have
U = K45 Us, where (X) stands for the Cartesian product, and U is the projection of U

onto the parameters of state s.
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Rectangular uncertainty

Uncertainty uncoupled across different states:
» Whether a parameter of a state s is allowed to take a certain value does not depend

on the parameter value of other states.

Definition 0.1 (Rectangular Uncertainty Set).

A robust MDP problem (7,S,.A,~v,U) has a rectangular uncertainty set if we have
U = K45 Us, where (X) stands for the Cartesian product, and U is the projection of U

onto the parameters of state s.

» Most widely studied case, due to computation efficiency.
» SA-Rectangular: parameters of different (s,a) pairs are uncoupled.

» Conservative to a fault.



Finite horizon case

» Let U] (h:) denote the total robust reward-to-go for policy 7 following history hy:

T-1
Ui (he) = (ggguEZ;p’r{; 75(55,a5)};
» U (ht) denote the optimal robust reward to go following history hy, i.e.,

Uf(ht) = max UJ (hy).

TI'GH%_IR



Main Result

» A Bellman Equation

Ur(hr) = 0;

Uf(hy) = max min
qe]P('ASt) (pstvrst )eust

Z Q(a){ré‘t(staa’)_’_ Z pst(5/|8t7a)Utt-l(htaa?S/)}

CLEAst S/ESH_l

> Implies Markovian Property.



Main Result

» A Bellman Equation
Ur(hr) = 0;

Uf(he) = max — min > qla){rs,(se.a) + D ps('lst,)Ufy (e, a, ')}
qe]P(‘ASt) (pStvr-St )eust aeAst 8/68t+1

> Implies Markovian Property.

» Handwaving proof:

> The optimal reward-to-go U;*(h¢) is the value of a [Stacklesberg game].

> Due to rectangular uncertainty, the game only depends on s;.

> Solve the optimal reward-to-go from time ¢ equals solving the min-max problem where
the payoff is the ¢-th step reward plus the optimal reward to go of the ¢ + 1 step.




Robust Dynamic Programming

1. Forall se Sy, set Uj(s) =0. Sett =T.
2. Lett=t—1.
3. Forall se &, let

Uf(s) = S (psI,II}S}EUs ag q(a){rs(s,a) + s/gﬂps(#ls? a)Uf (s}

¢*(s) =arg max min > gla){rs(s,a) + D po(s']s, ) (5}
qG]P(-As) (ps,rs)EUs acA, $'€Se41

(2)

4. 1f t =1, output 7* = ), ¢*(s). Otherwise, go to Step 2.



Robust Dynamic Programming

1. Forall se Sy, set Uj(s) =0. Sett =T.
2. Lett=t—1.
3. Forall se &, let

Uf(s) = S (psI,Il}Sleus ag q(a){rs(s,a) + s/e§+1p8(8/|57 a)Uf (s}

¢*(s) =arg max min > gla){rs(s,a) + D po(s']s, ) (5}
qu(As) (ps:rs)eus acA, $'€Se41

(2)

4. 1f t =1, output 7* = ), ¢*(s). Otherwise, go to Step 2.

» Computing Equation (2) requires solving a robust LP for linear uncertainty set.

» Similar results hold for SA-rectangular cases, except the optimal robust strategy
becomes deterministic.
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Discounted total reward

» States will be visited more than once, leading to two different models.

» Non stationary model: for different visits of a state, its parameter can change.

» Stationary model: for different visits of a state, its parameter remains the same.

> The optimal strategy for both models is the same.



Discounted total reward

1. The robust value V7 is the unique solution to the following set of equations:

V¥(s) = max  min Z q(a) {rs s,a) Z vps(s']s, a) Vi (s )}

qEP(As) (sz‘s)EUs acA, s'eS

2. The robust action q¥ is given by

g € arg max  min Z q(a) {rs (s,a) Z vps(s'|s, a) Vi(s )}

q€P(As) (ps.rs)els aEAs s'eS

3. A stationary strategy 7* is a robust strategy if 7% = X),.q¥ and ¢} is a robust
action for all s€ S.

3A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision Processes with Uncertain Transition
Matrices”, Operations Research, 2005.



Discounted total reward

1. The robust value V7 is the unique solution to the following set of equations:

V¥(s) = max  min Z q(a) {rs s,a) Z vps(s']s, a) Vi (s )}

qEP(As) (sz‘s)EUs acA, s'eS

2. The robust action q¥ is given by

g € arg max  min Z q(a) {rs (s,a) Z vps(s'|s, a) Vi(s )}

q€P(As) (ps.rs)els aEAs s'eS

3. A stationary strategy 7* is a robust strategy if 7% = X),.q¥ and ¢} is a robust
action for all s€ S.

> Essentially a Robust Value Iteration algorithm.

3A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision Processes with Uncertain Transition
Matrices”, Operations Research, 2005.



Robust Policy lteration

1. Arbitrarily initialize 70 e IMR. ¢ = (;

2. Policy Evaluation: find a vector V which solves the following fixed point equation.,

(Ps,rs)eUs

V'(s)= min ¥ guy(a) {T(Sva) + 2 p(s']s,a)

acAs s'eS

3. Policy Improvement: let

f/n(s/)} . 3)

" earg max min Z q(a){rs s, a) Z vps(s']s,a) V" (s )}

qu(As) (ps ,I‘S)EUS

and set 7" = ®), s g7t

acAs s'eS

4. Let n =n+ 1, and go back to Step 2 if the stopping criterion is not satisfied.



Average reward case

» Aim to solve
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Average reward case

» Aim to solve

M=

Maximize:; min lim —EP©T
p.reld T—0

f(ét,&t)} .
1

t

» Results only known for two special cases.

1. SA-rectangular and finite uncertainty set.
2. SA-rectangular and unichain.

» Solution: ~-discounted case with v 1 1.



Complexity Results

1. Complexity of VI and Pl algorithms essentially not hurt by robustness in the
rectangular case.

2. Underlying uncertainty set (inner optimization) determines complexity.



Outline

Part One: Solving robust MDP
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The paradise

2. Distributional robustness
Does God play dice?

3. Coupled uncertainty
When we can, When we cannot
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chance is no more than 5%".



Distributional robustness

» A criticism to Robust MDP (and Robust Optimization):
> Set-inclusive approach to model uncertainty

> Hard to incorporate probabilistic information, such as “bad thing could happen, but the
chance is no more than 5%".

» Distributionally robust optimization:

> The uncertain parameter is a random variables following an unknown distribution.
> The distribution belongs to a known set of distributions C, “ambiguity set”.

> Objective: Maximize the expected performance under the most adversarial distribution
in the ambiguity set



Distributionally robust MDP

» For m € IR we denote its performance under parameters pair (p,r), starting at

state s € S as
o(m, p,1,s) = EPPT {Z Y hr(se ar }

» Then, when the parameter follows distribution 1 € C, the expected performance of
is denoted by

W, 1, 5) = Egppymp{0(m aPaP,S)}ZJU(WaP7Ta5)dﬂ(P,1‘)-

» The distributionally robust MDP then seeks the strategy that maximizes its worst
expected performance, i.e., a strategy 7* € II” 2 such that

1nfw(7r @, s) < inf w(r™, y', s).
neC w'eC
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Distributionally robust MDPs
» Rectangular ambiguity set, i.e.,

= {plp = &) ps, ps € Cs, Vs € S}.
seS

» Distributionally robust MDP = Robust MDP:
Define U(C) = {(p,T)|3p e C: p=E,p; T = E,r}. Then we have

max minEp -, {ETPT[ Z Yy (s, ar)]}

mellHR  peC

T-1

= max min E”’p’r{z Y (st a0)}-
mellfR b relf(C)

Moreover, the optimal strategies for the two problems are the same.
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Part One: Solving robust MDP

1. Uncoupled uncertainty
The paradise

2. Distributional robustness
Does God play dice?

3. Coupled uncertainty
When we can, When we cannot



Coupled uncertainty: an example

Many real problems naturally call for a robust MDP with coupled uncertainty, such as the
Dynamic Ellsberg’s problem:

» An urn contains 30 red balls and 60 other balls — all of them either blue or green.
» A ball is drawn at time 1 from the urn.
» At time 2, it is revealed whether the drawn ball is green or not.

» Finally, at time 3, the color of the drawn ball is revealed. A reward of +1 is obtained
if the ball is red.



Coupled uncertainty: an example

Many real problems naturally call for a robust MDP with coupled uncertainty, such as the
Dynamic Ellsberg’s problem:

» An urn contains 30 red balls and 60 other balls — all of them either blue or green.
» A ball is drawn at time 1 from the urn.
» At time 2, it is revealed whether the drawn ball is green or not.

» Finally, at time 3, the color of the drawn ball is revealed. A reward of +1 is obtained
if the ball is red.

> Assume py, the probability that the ball is blue, is unknown, except p;, € [p,p]. Then
obviously the uncertainty set is non-rectangular.



Coupled uncertainty: an example

ty tz t3

Figure: State transition for dynamic Ellsberg’'s problem.



Bad news: it is hard to solve

» Suppose the uncertainty set is represented by linear constraints. Then deciding
whether the worst-case expected total reward

T-1
i1 | St |

t=1

is over a threshold is strongly NP-hard.

» Proof is by reduction to integer programming.



Silver lining

> In some cases, the optimal strategy can be obtained efficiently.

» In general, resort to approximation approaches.



Special case 1: Lightning does not strike twice

/@\

.\‘22

How many times can lightning strike?



Lightning does not strike twice

_______
_________

Only one storm happen
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Lightning does not strike twice

> Limiting the number of deviation allowed
Z/{K = {(p,T) Ps = P?’LOm)rS = Rnom except at most
51,.., 8K Where pg.,7g, € (Upsi’Ursi)}

» If K =0, Naive MDP
If K =S|, standard robust MDP

» K in between, interesting regime

v
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K-rectangular uncertainty sets

fl

l 7 ///
Al

”h% =

» But “close to" being rectangular.
» Rectangularity means conditional projection of the uncertainty set remains same.

» For LDST, there are K + 1 possible conditional projection of the uncertainty set.
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> Insight: history of parameter realization matters, but its sufficient statistics is the
number of deviation.
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> Expand the state space to incorporate the number of parameter deviations observed.

> Reduce the problem to a robust MDP with rectangular uncertainty set, on the expanded
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LDST - solution approach

» Robust MDP with LDST uncertainty set can be solved efficiently

> Insight: history of parameter realization matters, but its sufficient statistics is the
number of deviation.

> Expand the state space to incorporate the number of parameter deviations observed.

> Reduce the problem to a robust MDP with rectangular uncertainty set, on the expanded
state space (aka “lifting”).

» Similar ideas hold for other k-rectangular uncertainty sets.



LDST - solution approach illustration
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Special case 2: uncertain reward

v

The transition parameters are known, and the uncertainty only affect the reward
parameter.

v

Insight: One-to-one relationship between the state-action frequency and the policy.

v

The uncertainty only affects the total reward accumulated for certain state-action
frequency.

Use the dual LP form of MDP.

v



Uncertain reward

Solve the following robust LP:

Maximize:,, I’rIéan Z r(s,a)x(s,a)

u s€S acAs
Subject to: Z x(s',a) — 2 Z vp(s'|s, a)x(s,a) = a(s'),
s'eS seS aeAs

z(s,a) =0, Vse S,a e As.

The optimal policy at state s is given by gs(a) = x(s,a)/ X e 4, (s, d').

vs' e S;
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» In general, even evaluating the performance of a fixed policy 7 is NP-hard.
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Approximation: Linear decision rule

» In general, even evaluating the performance of a fixed policy 7 is NP-hard.

» A conservative approximation of the performance (i.e., lower bound) based on linear
decision rule.

» The uncertainty model: the reward parameters are known, and the transition
parameters are affine to some (uncertain) underlying parameters, i.e.,

p£('|87a> 2 Koo + ksy, forleZ=

where = is the set of the underlying parameters.

» Fix a stationary policy m and a parameter £. The transition kernel and the reward
parameter of the resulting MRP are P(m,&) and 7(m) respectively.



Linear decision rule cont.

» For fixed 7w and &, the value function v(m, &) is the optimal solution w™* to the
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where «(+) is the initial state distribution.
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Linear decision rule cont.

» For fixed 7w and &, the value function v(m, &) is the optimal solution w™* to the
following optimization problem

Maximize:wEa(s)ws Subject to: w < #(7w) + yP(m,&)w, Vse S,

where «(+) is the initial state distribution.

» Then, the worst-case expected performance of policy m, i.e., ming a'v(m,€) is given
by the following

Maximize:,,¢) min ) a(s)ws(§)
= A (5)
Subject to: w(§) < 7(w) + yP(m, w(§), VseS.

» Difficult to solve (5) because w(&) can be an arbitrary mapping.
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Linear decision rule cont.

» If we restrict w(§) to a certain function form easy to optimize, then we get a lower
bound, i.e., a conservative approximation of the robust performance of strategy .

v

Restricting w(§) to be a constant function gives the value function of 7 evaluated
with the worst parameter in the smallest rectangular uncertainty set that contains /.

» More general function form means tighter approximation.

» For example, the set of affine functions of £, i.e., w(§) = W& + wy.



Linear decision rule cont.

» Linear decision rule approximation for evaluating the robust performance of :
Maximize: min » a(s)w
w(§);wo,W L2 Zs: (s)ws(§)

Subject to: w(€) < #(x) + P, Eyw(&), VEe= (6)
w(&) = WE + wo.

» Depending on Z, the formulation can be solved efficiently, or readily approximated.



Linear decision rule cont.

» Linear decision rule approximation for evaluating the robust performance of :
Maximize: min » a(s)w
w(§);wo,W L2 Zs: (s)ws(§)

Subject to: w(€) < #(x) + P, Eyw(&), VEe= (6)
w(&) = WE + wo.

» Depending on Z, the formulation can be solved efficiently, or readily approximated.

» Finding the optimal policy (w.r.t. the approximation) leads to a bi-linear optimization
problem that is still difficult to solve.

> lterative optimization heuristics.



Outline

Part Two: Extensions

1. Large problems
2. Learning the uncertainty

3. Alternative formulations.



Large scale problems

» Thus far we have looked at methods that compute the exact solutions given the
models and the uncertainty sets of the MDP.

» For MDPs with very large or continuous state spaces this becomes intractable =
function approximation.

» Value iteration and policy iteration based methods.

» Assumes rectangular uncertainty throughout.



Large scale problems

» Thus far we have looked at methods that compute the exact solutions given the
models and the uncertainty sets of the MDP.

» For MDPs with very large or continuous state spaces this becomes intractable =
function approximation.

» Value iteration and policy iteration based methods.
» Assumes rectangular uncertainty throughout.
» The focus on ADP, not RL.
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Fitted robust value iteration

» Adapt fitted value iteration to the robust MDP setup.

» To ensure convergence, we use the non-parametric approach for value function
appoximation.

> A finite set of m representative states Sg = {$1,...,5m}
» The value of any other state s is computed by

i (5, 5,)V ™)

where k is a fixed and pre-determined kernel function.
> Moreover, the kernel function satisfies

VseS, D l|k(s,s;)| =1

J=1

This is called an [averager



Fitted Robust Value lteration

1. Set Vj =0. Set i = 0.
2. Leti=14+1.
3. For all s € Sg, let

V; _ . , + ~E saVi—
)7 2B i 41 U )+ Vi)

where Vs, Vi_1(s) = X cs, k(5,8 Viea(s)).
4. If stopping condition satisfied, stop. Otherwise, go to Step 2.



Fitted robust value iteration

» Main idea: To perform robust Bellman operator onl on representative set, and
interpolate the value of other states via (7).

» Convergence is guaranteed.

> The expectation E,, ,) can be costly to evaluate in general but can be replaced with
a finite-sample average.

» The algorithm gives the value function, a policy is computed via:

¥s, = ' 10) + VEpea) V] 8
) = ) i, 2 [ )+ E V] @



Fitted robust Q-value iteration

» For SA-rectangular uncertainty sets, fitted robust Q-value iteration is simpler to use.

» The general idea is to work with approximate state-action values (i.e., Q-values)
instead of state-values.



Fitted robust Q-value iteration

» For SA-rectangular uncertainty sets, fitted robust Q-value iteration is simpler to use.

» The general idea is to work with approximate state-action values (i.e., Q-values)
instead of state-values.

» Given Q-value Q(s,a) for each (s,a) € S, we have, for any (s,a) € S x A,
Q(S,CL) = 2 k(svaa Sjvaj)Q(3j7aj)7 (9)
j=1

and let the kernel to be an averager.

» Similar algorithm, similar guarantees. Main advantage is a deterministic policy 7 can
be easily obtained via:

Vs, w(s)=argmax@(s,a) = arg max Z k(s,a,s,a)Q(s',a),

A
(s',a")eS%

which computation is significantly less costly.



Fitted Robust Q-Value lteration

1. Set Q9 = 0. Set i = 0.
2. Lett =14+ 1.
3. For all (s,a) € S3, let

Qi(s,a) = o in r(s,a) + YEp(s.a) Vie1

where Vs, V;_1(s) = max, Z(s',a')esg‘ k(s,a,s,a)Qi_1(s',d).

4. If stopping condition satisfied, stop. Otherwise, go to Step 2.



Robust least square policy iteration

» Another class of widely used function approximation structure is the linear value
function approximation.

» For linear value function approximation, value iteration (even the vanilla, non-robust
one) may diverge.

» Use policy iteration type algorithms instead.



Policy Evaluation

» The value function is approximated by a linear architecture.

> For each state s, an m-dimensional feature vector ¢(s) is defined. Its value is given by
V(s) = ¢(s)Tw.
> In matrix form, ® is the feature matrix.
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Policy Evaluation

» The value function is approximated by a linear architecture.

> For each state s, an m-dimensional feature vector ¢(s) is defined. Its value is given by
V(s) = ¢(s)Tw.
> In matrix form, ® is the feature matrix.

» For policy m, let L™ be the associated robust Bellman operator

LTV (s) = (rgl)ierll/{s 4 qr(a)[r(s,a) + ’yEp(&a)V].

Then its robust value V™ satisfies
VT =LTVT,

» Caveat: V™ will not belong to the range of ® in general.



Policy Evaluation

> Ideally, seek a projection II¢ V™ = ®w™ such that w™ = arg min,, [|[V™ — ®w|¢ for
some norm || - [|¢.

» Unfortunately, w™ cannot be obtained directly since V™ is unknown.

> Instead, we seek a w that satisfies the following projected robust Bellman equation,
Qw = I LT dw. (10)

The projection matrix II¢ finds the least squares solution with respect to the norm
|z]e = >, &a? = 2T Zx where E = diag(€).



Policy Evaluation

v

Ideally, seek a projection II¢V™ = ®w™ such that w™ = arg min,, [|[V™ — ®w|¢ for
some norm || - [|¢.

» Unfortunately, w™ cannot be obtained directly since V™ is unknown.

> Instead, we seek a w that satisfies the following projected robust Bellman equation,
Qw = I LT dw. (10)

The projection matrix II¢ finds the least squares solution with respect to the norm
|z]e = >, &a? = 2T Zx where E = diag(€).

» Very similar to how LSPI is derived (which solves the projected Bellman equation).



Solving projected robust Bellman equation

» The operator L™ is non-linear and in general we cannot guarantee the existence nor
the uniqueness of the solution w of (10).

» Different from solving projected bellman equation, and calls for the following
assumption.



Solving projected robust Bellman equation

» The operator L™ is non-linear and in general we cannot guarantee the existence nor
the uniqueness of the solution w of (10).

» Different from solving projected bellman equation, and calls for the following
assumption.

Assumption. There exists an ergodic Markov chain on S with transition given by
p(s'|s), which satisfies the following:

1. There exists 8 € (0,1) such that for each s,s' € S and p € Us,
2, (. 20
vp(s|s, m(s)) < B7p(s']s). (11)

2. ¢ is the stationary distribution of the Markov chain defined by p(s’|s).



Solving projected robust Bellman equation

» Under this assumption, there exists a unique solution w* to (10) such that

[®w* = VT < SIVT = VT e

1
V1-p2
> Also, TI¢L™ is a contraction. Hence we can solve (10) for w* by starting with an

arbitrary wq and iterating as follows:

w1 = (PTED) LD TELT Dy,

» For large state space, it may not be feasible to compute the above exactly. Instead,
we can approximate the above using a small subset of sample states.



Policy Improvement

> A policy iteration type algorithm constitutes two steps: policy evaluation and policy
improvement.

» Given V™ = ®w™*, one can derive a greedy, randomized policy 7’ as follows:

Vs, 7'(s)e€arg qelg?i) (rgl)ieIZl/ls 4 q(a)[r(s,a) + YEp(s,q) Pw™].

» For the SA-rectangular case, one can derive a deterministic policy 7’ given

A~

Q™ = dw™ in a much simpler way:

Vs, n'(s)€argmaxd(s,a)’ w®.
a

» Performance guarantees are the same as standard LSPI.



Back to (Soft) Motivation: Robustness, Regularization and Generalization

» Regularized RL

5 Improves policy exploration

5 Improves stability during training

5 Computationally efficient

© Not encompassing model uncertainty

[Fact 0-a: Regularized RL is not always robust to model uncertainty]

» Robust RL

(5 Encompasses model uncertainty
© Computationally expensive

[Fact 0-b: Robust RL is much more expensive than regularized RL]




Contributions

1. MDP with policy regularization
<= Robust MDP with uncertain reward

(1.a) Policy-gradient theorem for reward-robust MDPs

2. Robust MDP with uncertain reward and transition
<= MDP with policy + value regularization

(2.a) Twice regularized (R?) Bellman operators

3. R2 MDPs with converging R? MPI
= Computationally efficient robust planning

4. R2 MDPs with converging R2 DQN
== Scalable robust learning

*“Twice regularized MDPs and the equivalence between robustness and regularization”, E. Derman, M.
Geist, S. M. Neurips, 2021



Preliminaries

MDP - (87 Aa ’77 T, ]))
Initial state distribution - g
Policy - me A

» Standard value function - fixed point v = r™ + v /"v

» Regularized value function - fixed point with modified reward
v=(r"—Q(m)) +vyFP"v

Uncertainty set U := X sc5(Ps, Rs)
> Robust value function - fixed point for worst model v = min - .myg= {7 + v/ v}

lFact 0-a: Regularized RL is not always robust to model uncertaintyl
| Fact 0-b: Robust RL is much more expensive than regularized RLI




Reward-robust MDPs

[lyengar, 2005] The robust value function for policy 7 is the optimal solution of:

max{v, s.t.v< min {r"+~4P"v
max(v, fo) (,,w)em{ v v}

[Fact 1: Policy Regularization < Reward Robustness]

Theorem 0.2.
IfUu = {Py} x (ro + R), then the robust value function for policy 7 is the optimal solution
of:

ma§<v,uo> s. t.u(s) < (rf +yFv)(s) —or.(—ms) forall s€ S.
veR



Uncertainty sets from regularizers

Uncertainty

{FPo}

Neg. Shannon KL Neg. Tsallis
Regularizer
1
2, ms(a) In(m (@) Mln(ﬂs@ S(msl? = 1)
= 2t (y )
Reward Un-
certainty
m(— L) o) @)+ R (m) | [Lomsl@) |
ms(a) 2
Transition

{Po}




General Robust MDPs

[Fact 2: Policy + Value Regularization < General Robustness]

Theorem 0.3.
IfU = (Po+ P) x (ro + R) then the robust value function for policy 7 is the optimal
solution of:

max(v, o) st 0(s) < (1 +7170)(s) = o, (=) = o, (<0 7)
VE

for all s € S, where [v - 75](s',a) := v(s')ms(a).



General Robust MDPs: Ball uncertainty sets

Ball uncertainty:
Ps = {PS € ]RX : ||P5H < Oéé)}
Rs = {7‘5 € RA : ||TS|| < Oé;}, VseS

The robust value function for policy 7 is the optimal solution of:

max(v, o) s. . v(s) < (1§ +7770)(s) = |17l (e + s Allv])
v

. ~

[T7%v](s)

forall se S



Twice regularized MDPs (R? MDPs)

Definition 0.4.
Let Q, p2(ms) == [|7s|| (g + g ylv]]). The R? Bellman operators are defined as
[TﬂvRQU](s) 1= TP, r)U(8) = Qy p2(ms) Vs€S,

(m
[T v](s) 1= giﬁé[Tﬂ’RQ vl(s) = o(s) VseES.

Twice regularized value function - fixed point
v=(rf — Qi (7)) +y(Pjv - ) =: T™"y

— Twice regularized operators are contracting

— Convergence of any planning algorithm (VI, Pl, MPI)



Planning in R?> MDPs

Table: Vanilla, R? and robust planning algorithms. Computing time in sec.

Vanilla R? Robust
PE 0.008 +0. | 0.02+0. | 54.8+1.2
MPI (m=1)] 0.01+0. | 0.03+0. | 1186+ 1.3
MPI (m =4) | 0.001+£0. [ 0.03+0. | 98.1+4.1

— R? MPI time complexity ~ vanilla MPI time complexity




Learning in R> MDPs

Algorithm 2 R? g-learning

Input: Uncertainty levels o, a” € RY: Learning rates (B;):en with 8; € [0,1]%;
Initialize: ¢ = 0; ¢ = qo - Arbitrary g-function;
repeat

Act e-greedily according to a; < arg max,¢ 4 ¢¢(s¢, b), observe s; 1 and obtain

Set v; = maxpe 4 g1(-,b)

2
Set 6f =7+ ymaxpea ¢i(st41,b) — Af,q, — ’Y%F:at loell = ge(se, az)
2

Update g41(s¢, ar) = qe(st, ar) + Be(se, ae)0f
until convergence
Return: R? value ¢

“E.D., Y. Men, M. Geist, S. Mannor. Twice regularized MDPs: The equivalence between robustness
and regularization. Under review at JMLR
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Algorithm 2 R? g-learning

Input: Uncertainty levels o, o™ € R ; Learning rates (Bt)ten with B; € [0,1]%;
Initialize: ¢ = 0; ¢ = qo - Arbitrary g-function;
repeat
Act e-greedily according to a; < arg max,¢ 4 ¢¢(s¢, b), observe s; 1 and obtain
SEI “‘ — NAXKr- 4 (I+(- b\
2

Set 6f = 7y + ymaxpe 4 g (st11,0) — F,q, — vb o, [0l — g1 (51, ar)
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until convergence

Return: R? value ¢
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and regularization. Under review at JMLR



Learning in R> MDPs

Algorithm 2 R? g-learning

Input: Uncertainty levels o, o™ € R ; Learning rates (Bt)ten with B; € [0,1]%;
Initialize: ¢ = 0; ¢ = qo - Arbitrary g-function;
repeat
Act e-greedily according to a; < arg max,¢ 4 ¢¢(s¢, b), observe s; 1 and obtain
SEI “‘ — NAXKr- 4 (I+(- b\
2

Set 6f = 7y + ymaxpe 4 g (st11,0) — F,q, — vb o, [0l — g1 (51, ar)
Update g;+1(st, ar) = qi(st, at) + Be(Se, ae)or
until convergence

Return: R? value ¢

— Provable convergence to optimal robust g-value

“E.D., Y. Men, M. Geist, S. Mannor. Twice regularized MDPs: The equivalence between robustness
and regularization. Under review at JMLR



Learning in R> MDPs

Algorithm 2 R? g-learning

Input: Uncertainty levels o, o™ € R ; Learning rates (Bt)ten with B; € [0,1]%;
Initialize: ¢ = 0; ¢ = qo - Arbitrary g-function;
repeat
Act e-greedily according to a; < arg max,¢ 4 ¢¢(s¢, b), observe s; 1 and obtain
sgl “‘ — NAXKr- 4 (I+(' b\
2

Set 6f = 7y + ymaxpe 4 g (st11,0) — F,q, — vb o, [0l — g1 (51, ar)
Update q;11(5¢, at) = q:(St, a¢) + Be(St, as)oy
until convergence
Return: R? value ¢

— Provable convergence to optimal robust g-value
— Extension to R2 DDQN

“E.D., Y. Men, M. Geist, S. Mannor. Twice regularized MDPs: The equivalence between robustness
and regularization. Under review at JMLR



Learning in R> MDPs

Algorithm 2 R? g-learning

Input: Uncertainty levels of, o € Rf ; Learning rates (8;):en with 8¢ € [0,1]%;
Initialize: t = 0; ¢ = qo - Arbitrary g-function;
repeat

Act e-greedily according to a; < arg maxy¢ 4 g:(S¢, b), observe s;41 and obtain r;

— 4 Gf(' b)
2
Set 6} = ry + ymaxpe 4 gt (Se41,b) — af, 4, — vk o [|ve]] — qe(se, ar)

Update q;11(8t, ar) = q1(st, ar) + Bi(st, at)‘“t!
until convergence
Return: R? value g

— Provable convergence to optimal robust g-value
— Extension to R2 DDQN

...But how to compute [[v;|| in deep?

“E.D., Y. Men, M. Geist, S. Mannor. Twice regularized MDPs: The equivalence between robustness
and regularization. Under review at JMLR



» Sample batch B; from replay buffer
» Compute empirical norm Hth%t = Yeen, Vi(s)?

> Include moving average (1 — 3)[lv;—1ll%,_, + Bllv:ll,



» Sample batch B; from replay buffer
» Compute empirical norm ||vt||%t =D B, vy(s)?
» Include moving average (1 — ﬁ)HUt_1Hl2gt_1 + Blloell3,

-9
E

]

T R TR

Distance to ||v*'*||
N

=]

— pf=1 — Bg=01 — B=10"1 B=105 — Bg=10"7

Step led



R? DDQN

Table: Vanilla, R? and robust DDQN. Average computing time of a learning step in 0.1 xms.

’ Environment ‘ Vanilla Robust R2
Cartpole 25+0.1|76.9+153|83+£1.0
Acrobot 23+0.1|73.0£153|81+0.2
Mountaincar | 2.5 +0.8 | 77.6 £16.0 | 8.2+ 0.5

— R? DDQN time complexity ~ vanilla DDQN time complexity



R? DDQN

Cartpole Acrobot
500 -
= - 100
—
400
—~200 -120
B 300 _140
g 100 M
& 200 -160
—— Vanilla
-400
100 R2 -180
—— Robust
o 1 2 3 a € 1 2 3 a 5 6 1 2 3 4 6
Step 1les Step 1e5 Sten 1e5
Vanilla Robust R2
< -40
8- 0 - 116 0 20 +0 0 18 5 0 0 0 20 16
S -60
g -80
e
)
-100
8=
[
5 8 -120
)
- -140
°
]
o -160
n
° -180
b
-200

0.002 0.0025 0.004 0.006 0.008
Gravity

0.001 0.002 0.0025 0.004 0.006 0.008
Gravity

0.001 0.002 0.0025 0.004 0.006 0.008
Gravity



Discussion

» Scalable robust RL with a theoretical grounding
— Robust policy-gradient for general robust MDPs

— Extension to continuous control?



Discussion

» Scalable robust RL with a theoretical grounding
— Robust policy-gradient for general robust MDPs

— Extension to continuous control?

» Reward o, (—ms) VS Transition (—yv - 75)
— Rewrite v = Y2 A/ (7)™
(—yv - ) = op (= (X2 V(P rT) - ms)
— Receding horizon regularization?

l



Outline

Part Two: Extensions

1. Large problems
2. Learning the uncertainty

3. Alternative formulations.



Question: where do | get uncertainty sets from?

There are two types of parameter uncertainty.
» Stochastic uncertainty: there is some true p and true r, just that we don't know the
exact value.

» Adversarial uncertainty: there is no true p and r, each time when the state is visited,
the parameter can vary.

> Due to model simplification, or some adversarial effect ignored.



Question: where do | get uncertainty sets from?

There are two types of parameter uncertainty.

» Stochastic uncertainty: there is some true p and true r, just that we don't know the
exact value.

» Adversarial uncertainty: there is no true p and r, each time when the state is visited,
the parameter can vary.

> Due to model simplification, or some adversarial effect ignored.

» If | can collect more data, can |

> Identify the type of the uncertainty?
> Learn the value of the stochastic uncertainty?
> Learn the level of the adversarial uncertainty?



Formal setup

» MDP with finite states and actions, reward in [0, 1].

» For each pair (s,a), given a (potentially infinite) class of nested uncertainty sets
(s, a).

6S. Lim, Huan Xu, S. M., “ Reinforcement Learning in Robust Markov Decision Processes’. Math.
Oper. Res. 41(4): 1325-1353 (2016)
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» MDP with finite states and actions, reward in [0, 1].

» For each pair (s,a), given a (potentially infinite) class of nested uncertainty sets
(s, a).

» Each pair (s,a) can be either stochastic or adversarial, which is not known.

» If (s,a) is stochastic, then the true p and r are unknown

» If (s,a) is adversarial, then its true uncertainty set (also unknown) belongs to (s, a).
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Formal setup

» MDP with finite states and actions, reward in [0, 1].

» For each pair (s,a), given a (potentially infinite) class of nested uncertainty sets
(s, a).

» Each pair (s,a) can be either stochastic or adversarial, which is not known.

» If (s,a) is stochastic, then the true p and r are unknown

v

If (s,a) is adversarial, then its true uncertainty set (also unknown) belongs to (s, a).

v

Allowed to interact in the MDP many times.

6S. Lim, Huan Xu, S. M., * Reinforcement Learning in Robust Markov Decision Processes’. Math.
Oper. Res. 41(4): 1325-1353 (2016)
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Challenge and Objective

» For adversarial state-action pairs, the parameter can be arbitrary (and adaptive to
the algorithm).

» Hence not possible to exactly identify the type of uncertainty.

» Not possible to achieve diminishing regret against optimal stationary policy “in
hindsight”. That is, may not take full advantage if the adversary chooses to play nice.

» Can achieve a vanishing regret against the performance of the robust MDP knowing
exactly p and r for stochastic pair, and the true uncertainty set of adversarial pair.



Main intuition

» When purely stochastic, one can resort to RL algorithms, such as UCRL (which
consistently uses optimistic estimation) to achieve diminishing regret.

» However, adversary can hurt.



Main intuition

» 20 < a < 3.

» Choose solid line in phase 1 (2T steps) dashed line in phase 2 (T steps).

» The expected value of s4 is g* + *B , and the expected value of s1 is
g* + 2B s g,

» The total accumulated reward is 3Tg* + T'(23 — «). Compared to the minimax
policy, the overall regret is non-diminishing.



Main intuition

Be optimistic, but cautious.

» Using UCRL, start by assuming all state-action pairs are stochastic.

» Monitor outcome of transition of each pair. Using a statistic check to identify pairs
with overly optimistic beliefs: assumed to be stochastic but indeed adversarial, or
assumed to have an uncertainty set smaller than its true uncertainty set.

» Update the information of pairs that fail the statistic check, and re-solve the minimax
MDP.



The algorithm: OLRM

Input: S, A, T, 6, and for each (s, a), (s, a)

1. Initialize the set F' < {}. For each (s,a), set U(s,a) < {}.

2. Initialize k < 1.

3. Compute an optimistic robust policy 7, assuming all state-action pairs in F' are
adversarial with uncertainty sets as given by U(s, a).

4. Execute 7 until one of the followings happen:

> The execution count of some state-action (s, a) has been doubled.
> The executed state-action pair (s, a) fails the statistic check. In this case (s, a) is added
to F' if it is not yet in F'. Update U(s, a).

5. Increment k. Go back to step 3.



Computing Optimistic Robust Policy
Input: S, A, T, 8, F, k, and for each (s,a), U(s,a), Py(:|s,a) and Ny(s,a).

1. Set VE(s) = 0 for all s.

2. Repeat, fort =T —1,...,0:
> For each (s,a) € F, set Qf(s, a) =min{T —t, r(s,a)+ mingery(s,q) p()f@’il()}
> For each (s,a) ¢ F', set

Qf(sva) = min{T*tv r(s,a) +ﬁk(|sva)‘~/t]j-1()

1 14SATk?
+ (T + 1)\/2Nk(s,a) log 5 }.

» For each s, set  V}¥(s) = max, QF(s,a) and 7(s) = argmax, Q¥(s,a).

3. Output 7.



Computing Optimistic Robust Policy
Input: S, A, T, 8, F, k, and for each (s,a), U(s,a), Py(:|s,a) and Ny(s,a).

1. Set VE(s) = 0 for all s.

2. Repeat, fort =T —1,...,0:
> For each (s,a) € F, set Qf(s, a) =min{T —t, r(s,a)+ mingery(s,q) p()f/,f’il()}
> For each (s,a) ¢ F, set

Qf(sva) = min{T*tv r(s,a) +15k('|sva)‘~/t]j-1(')

1 14SATk?
+ (T + 1)\/2Nk(s,a) log 5 }.

» For each s, set  V}¥(s) = max, QF(s,a) and 7(s) = argmax, Q¥(s,a).

3. Output 7.

Robust to adversarial, optimistic to stochastic.



Statistic check

> When (s,a) ¢ F, it fails the statistic check if:

i{ (s, @)V () = Vi 5 )} (25+T+35T\F)\/TS?T72,

> When (s,a) € F, it fails the statistic check if

> | min p000 - T >}>2T¢ (= tog M

jem 41 pEU(s,a)

> If (s,a) fails the statistic check, add (s,a) into F', and update U(s,a) as the smallest set in
(s, a) that satisfies

1472

5 | i pOVEA0 Vi) | <y 200 g

jem41 peU(s,a)




More on statistic check

» Essentially checking whether the value of actual transition from (s, a) is below
what is expected from the belief of the uncertainty.

> No false alarm: with high probability, all stochastic state-action pairs will always pass
the statistic check; and all adversarial state-action pairs will pass the statistic check if
U(s,a) DU*(s,a).

» May fail to identify adversarial states, if the adversary plays “nicely”. However,
satisfactory rewards are accumulated, so nothing needs to be changed.

> |If the adversary plays “nasty”, then the statistic check will detect it, and
subsequently protect against it.



Performance guarantee

Theorem 0.5.
Given 6, T, S, A and i, if |$(s,a)| < C for all (s,a), then the total regret of OLRM is

A(m) <O

T32(+/S + \/a)\/SAm log SAg“m

for all m, with probability at least 1 — .
The total number of steps is 7 = T'm, hence the regret is O[T(v/S + v/C)VSAT].



Performance guarantee

» What if 4l is an infinity set?

» We consider the following class:

U(s,a) = {n(s,a) + aB(s,a) : ap(s,a) < a < agp} N P(S) (12)

Theorem 0.6.
Given §, T, S, A, U as defined in Eq. (12), the total regret of OLRM is

A(m) <O [T (s\/AT + (SAay,BYY3rY3 4 (SAaOOB)l/372/3)] .

for all m, with probability at least 1 — §.



Infinite horizon average reward

» Assume for any p in the true uncertainty set, the resulting MDP is unichain and
communicating.

» Similar algorithm, except that computing the optimistic robust policy is trickier.
> Similar performance guarantee: O(y/7) for finite 4, and O(7%/3) for infinite 4.



Action Robustness
A trembling hand model

T, w.p. 1—a.
', w.p. a.

The policy 7’ is potentially adversarial.
Continuous extension: agent chooses a, adversary can modify to (1 — a)a + ad'.

6C. Tessler, Y. Efroni, S. M., “Action Robust Reinforcement Learning and Applications in Continuous
Control”. ICML 2019: 6215-6224



Action Robustness
A trembling hand model

T, w.p. 1—a.
', w.p. a.

The policy 7’ is potentially adversarial.
Continuous extension: agent chooses a, adversary can modify to (1 — a)a + ad'.

Update
_ . . ; adversary
AR-DDPG: zg“grop;:imal towards the
Bolcy, 1-step greedy
policy
1. Train Actor
2. Train Adversary
. i .. . Evaluate
3. Train Critic for the joint policy joint policy

6C. Tessler, Y. Efroni, S. M., “Action Robust Reinforcement Learning and Applications in Continuous
Control”. ICML 2019: 6215-6224



Some results

Hopper-v2
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Some results

Hopper-v2
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» Robustness: uncertainty + transfer to unseen domains

» A gradient based approach for robust reinforcement learning with convergence
guarantees

» Does not require explicit definition of the uncertainty set



Outline

Part Two: Extensions

1. Large problems
2. Learning the uncertainty

3. Alternative formulations.
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» Robust MDP uses the minimax objective scheme.

» Some may argue the solution can be too conservative.
> Alternative formulations to mitigate sensitivity to parameter uncertainty:

1. the robustness performance tradeoff method,;
2. the chance constraint method; and
3. the minimal regret method.



Alternative formulations

v

Robust MDP uses the minimax objective scheme.

» Some may argue the solution can be too conservative.
Alternative formulations to mitigate sensitivity to parameter uncertainty:

1. the robustness performance tradeoff method,;
2. the chance constraint method; and
3. the minimal regret method.

v

» Computationally more challenging than robust MDP.



Robustness Performance Tradeoff

» Suppose the decision maker is given a description of the MDP including both the
nominal parameter and the uncertainty set of the parameter.

» Likely case vs all possible scenarios.

» To find a policy that achieves a good tradeoff between the (nominal) performance
and the robustness.

"H. Xu, S. M., “The Robustness-Performance Tradeoff in Markov Decision Processes”, NIPS 2006:
1537-1544
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Robustness Performance Tradeoff

» Suppose the decision maker is given a description of the MDP including both the
nominal parameter and the uncertainty set of the parameter.

» Likely case vs all possible scenarios.

» To find a policy that achieves a good tradeoff between the (nominal) performance
and the robustness.

» P(m) and R(m) be the nominal performance and worst-case performance of 7.
» Goal: find Pareto efficient policies.

» Computationally hard in general. Optimal policy can be non-Markovian.

» Focus on uncertain reward case.

"H. Xu, S. M., “The Robustness-Performance Tradeoff in Markov Decision Processes”, NIPS 2006:
1537-1544



Uncertain reward case — finite horizon

> Let ¢}(s) to be the optimal tradeoff value from time ¢ on at state s, i.e.,

cg\(s) = max {AP;(m,s) + (1 — \)Ry(m,s) },

mellHR

where P;(m,s) and R¢(m, s) are the reward-to-go under nominal and worst
parameters from time ¢.
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mellHR

where P;(m,s) and R¢(m, s) are the reward-to-go under nominal and worst
parameters from time ¢.

» Robust Bellman equation holds:
cg\(s) = max { min [)\ ZaeAs r0(s,a)q(a) + (1 — ) ZaeAS (s, a)q(a)] +

qeP(As) \ rselds
Zs’est+1 ZaeAs p(8/|5, a)Q(a)Ci\—H (5,)}'



Uncertain reward case — finite horizon

> Let ¢}(s) to be the optimal tradeoff value from time ¢ on at state s, i.e.,

cM(s) = max {AP(m,s) + (1 — N Ry(m,s) },

mellHR

where P;(m,s) and R¢(m, s) are the reward-to-go under nominal and worst
parameters from time ¢.

» Robust Bellman equation holds:
cg\(s) = max { min [)\ ZaeAs r0(s,a)q(a) + (1 — ) ZaeAS (s, a)q(a)] +

qeP(As) \ rselds
Zs’est+1 ZaeAs p(8/|s, a)Q(a)Ci\—H (5/)}'

» The whole Pareto front can be computed for polytope uncertainty sets, using
Parametric Linear Programing.



Uncertain reward case — infinite horizon discounted total reward

» One-to-one relationship between state-action frequency and vectors belonging to the
following polytope X:

Z z(s',a) — Z Z vp(s'|s,a)z(s,a) = a(s’), x(s,a) =0, Vs,Vae As.

acA seS acAs
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Uncertain reward case — infinite horizon discounted total reward

» One-to-one relationship between state-action frequency and vectors belonging to the
following polytope X:

Z z(s',a) — Z Z vp(s'|s,a)x(s,a) = a(s’), x(s,a) =0, Vs,Va e As.

acA seS acAs

» Thus, R-P tradeoff is a robust LP:

Maximize: 1nf Z Z [AF(s,a)x(s,a) + (1 — N)r(s,a)z(s,a)]

SES aEA;
Subject to: x e X.

» For polytope uncertainty set, robust LP can be rewritten as a parametric linear
program to find all Pareto efficient policies.



Percentile Optimization / Bayesian

» Percentile optimization: to handle parameter uncertainty by considering the
parameters as random variables and following the Bayesian point of view.

8E. Delage, S. M., “Percentile Optimization for Markov Decision Processes with Parameter
Uncertainty”. Oper. Res. 58(1): 203-213 (2010)



Percentile Optimization / Bayesian

» Percentile optimization: to handle parameter uncertainty by considering the
parameters as random variables and following the Bayesian point of view.

» Reward vector r and transition probability p are random variables with joint
probability distribution functions f. and fp.

» Measure policies in the following chance-constrained form:

Maximize:, . Y
T
Subject to: Po~ for~fo {Ep’r’” [Z 7t (s, at)] > y} >1—e
t=1

> the expectation is taken over inherent randomness of the MDP for a fixed parameter
P, I, whereas the probability is over the randomness on the parameters.

®E. Delage, S. M., “Percentile Optimization for Markov Decision Processes with Parameter
Uncertainty”. Oper. Res. 58(1): 203-213 (2010)



Uncertain reward case

» When transition probability is exacty known. The chance constrained MDP is
equivalent to a chance constrained LP:

Maximize:, x Y
Subject to: Py, (rTx >y)=1—c¢
xe X,

» Chance constrained LP is NP-hard in general.

» For certain class of distributions, chance constrained LP can be solved efficiently. For
example, when f; is a Gaussian distribution and € < 0.5.



Uncertain transition probability

» Much more computationally challenging.

> Only known results is when f, follows a Dirichlet prior.



Uncertain transition probability

» Much more computationally challenging.
> Only known results is when f, follows a Dirichlet prior.
» For Dirichlet prior, second order approximation is used to evaluate a policy, and find

the optimal policy.



Posterior Uncertainty Sets: Online Construction of Uncertainty Sets
» Bayes-Adaptive Decisions (BAD) is a difficult model (POMDP)

We offer a robust alternative:
» Dirichlet prior on distribution over next states.
» Observation history H up to time h
» Time h - current step and t - current episode

’Pga(wsa) = {psa € AS : ”psa - ﬁsa”l < wsa}
Dsa = E[psa | H] is the nominal transition.

This uncertainty set is
» Rectangular:

Ph= &K Pl
seS,ace A
» Updated online according to new observations

9Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, S. M., “A Bayesian Approach to Robust
Reinforcement Learning”, UAI 2019: 648-658




Uncertainty Robust Bellman Equation (URBE)
» Posterior robust Q-value random variables satisfy a robust Bellman recursion

Ah D h : h Ah+1
sa = Tsq T Inf E 7rS'a/psas’Qslal
pePh

sa s al
: o oh i h Ah+1
» Posterior worst-case transition: py, € arg min, s, Zs,’a, T arPsas' Qo

Theorem 0.7 (Solution of URBE).
There exists a unique mapping w that satisfies the URBE:

h _ _h 2 h ~h h+1
Weq = Vg + 7 Z QyomIo (psas’)ws’a'
s'eS,a’e A

» Approximate Q-values as N (Q, diag(w)).



Deep Learning Approximation

Input Hidden Robust
layer layers Q layer
> Q(s,01) .
— Q(S:a2) \\
\:.— gi o Q(A:aﬂ) ;))
I ; -
Observation s .

Control

¢~ N(Q(Bs -): U(S ))

a = arg mf.x{b

Q-head uses robust TD error. URBE layer uses approximation.
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» DQN/DQN-UBE: Overly sensitive to change of dynamics
» Robust DQN: Overly conservative



Discussion

v

Adding URBE as a variance bonus leads to less conservative solutions

v

DQN-URBE encourages safe exploration by implicitly updating the uncertainty set

v

DQN-URBE is able to adapt to changing dynamics online

v

Connections to Thompson sampling and pseudo-Bayesian approaches



Summary

Part One: Solving robust MDPs

1. Uncoupled uncertainty: All is known
2. Distributional robustness: Most is known

3. Coupled uncertainty: Some is known



Summary

Part Two: Extensions

1. Large problems: + Can do policy gradients; continuous space, time and actions; +
Solve robotic tasks.

2. Learning the uncertainty: domain adaptation; Bayes adaptive formulations; hardness
results.

3. Alternative formulations: Sim2Real; revisiting persistence; partial observability, 777



Many Challenges Remain

1. Bayes-adaptive domain adaptation: 0-shot and few-shot robust learning

2. Robustness in context

3. Learning with humans: LLMs and soft feedback

4. In-scene persistence (objects/agents) and video games/autonomous vehicles

5. Small data regimes: Medical applications, climate, smart grids

[I am recruiting PhD students/postdocs. Interested? mailto:shie@technion.ac.il]
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