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Classical planning problems

We typically want to maximize the expected average reward

In planning:

§ Model is “known”

§ A single scalar reward

§ Rare events (black swans) only crop-up through expectations
§ Model may be perturbed

§ Adversary
§ Nature
§ Lack of stationarity
§ Estimated from finite data
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Motivation example - Mail Catalog
§ Mail order retailer
§ Marketing problem: send or not send coupon/invitation/mail order catalogue

§ Common wisdom: per customer look at RFM:

Recency, Frequency, Monetary value

§ Dynamics matter
§ Every model will be “wrong:” how do you model humans?

1S. M., D. Simester, P. Sun, and J. N. Tsitsiklis, “Biases and Variance in Value Function. Estimates,”
Management Science 53(2):308-322, 2007.
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Mail Catalog Case Study

§ Data: a data set with complete transaction histories of 1.72 million customers for a
six-year period is given.

§ An MDP is constructed as follows:
§ State: RFM, each quantized into four discrete levels, leading to a state space S with

43 “ 64 states.
§ Action: either mail or not mail to the customer.
§ Objective: to maximize its expected total discounted profits.
§ Reward: the purchase amount (if any) minus the mailing cost.

§ Thus, each customer’s historical data over time serves as a sample trajectory.

§ And the entire dataset of 1.72 million trajectories consists of 164 million
observations, where an “observation” means the state transition in the history of a
customer in one mailing period.
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Case study – Impact of parameter uncertainty

§ Subsets of the data set are used to estimate the parameters of the MDP. The data
set is randomly divided into 250 equal-sized subsamples, each containing about
657, 000 observations.

§ In each subsample, the expected reward parameter in each state is estimated using
approximately 10, 000 observations.

§ The probability of each feasible transition is estimated using approximately 1400
observations.



Impact of parameter uncertainty - fixed policy

§ For the historical policy π used by the firm, we have 250 estimate of the value
function.

§ For each value function, average across 64 states – average value function (AVF).

§ Ground truth AVF is $28.54.

§ The average of the 250 estimates is $28.65 with an empirical standard deviation of
$0.97. The standard deviation of $0.97 shows that the value function estimated from
a subsample may deviate significantly from the true value.

§ The 95% confidence interval of the 250 estimate is r$26.59, $30.49s, or roughly a
deviation of 14% of the true value.
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Impact of parameter uncertainty – “optimal” policy

§ Curse of Optimality: When the policy optimization procedure is involved, the
impact of parameter uncertainty is more severe.

§ The entire data set is randomly divided into a calibration sample and a validation
sample.

§ The calibration sample is used to estimate the model parameter, then giving an
“optimal policy”.

§ We are interested in the bias of the AVF estimate and the suboptimality, of the
“optimal policy”.
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Figure 4 The Differences (Marked by “+”) Between the AVF Estimates
(in Dollars, and Averaged Over All States) Based on the
Calibration Sample and the Validation Sample for the
Policy Identified Through an Optimization Process
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Note. Each “+” was generated by randomly partitioning the data to a cali-
bration and a validation sample. The horizontal axis corresponds to the size
of the calibration sample, as a percentage of the full data sample. Here, �=
0�98 for which the true optimal AVF is approximately $33.59.

This bias is illustrated in Figure 4 for calibration sam-
ples of varying sizes. It can be seen that value func-
tion estimates from the calibration sample are almost
uniformly greater than the estimates from the valida-
tion sample. This bias is statistically significant. It is
also managerially relevant, averaging around 6.3% of
the true optimal AVF ($33.59) for a calibration sam-
ple that consists of approximately 1.6 million observa-
tions (1% of the data). In addition, the $33.59 AVF for
the optimal policy can be compared with the $28.54
AVF for the historical policy (reported in Figure 1).
These results indicate that the optimal policy offers a
potential profit improvement of approximately 17%.
We can also use the catalog data to investigate the

extent to which parametric variance leads to subop-
timal policies. To do so, we compared the “optimal”
policy derived using each subsample, with the true
optimal policy derived using the entire data set. Both
policies are evaluated on the validation sample. We
use Y ∗ to denote the AVF for the optimal policy found
by optimizing on the entire data set. The findings are
reported in Figure 5. As expected, the optimal pol-
icy always outperforms the policy derived from the
calibration subsample. The differences are again sta-
tistically significant. Note that the computation of Y ∗

and Yval uses the same data, which may introduce
correlation between the two quantities. This will tend
to diminish our estimates of the “suboptimality.” We
also computed Y ∗

val, the optimal AVF over the valida-
tion set, in place of Y ∗ for Table 3 and Figures 4 and 5.
The results are similar.
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bration and a validation sample. The horizontal axis corresponds to the size
of the calibration sample, as a percentage of the full data sample. Here, �=
0�98 for which the true optimal AVF is approximately $33.59.

To demonstrate the robustness of the findings, we
performed an experiment similar to the one reported
in Table 2. In Table 3, we present the bias and sub-
optimality introduced by the optimization process for
different values of �. Specifically, the bias was calcu-
lated as �Ycal − Yval�/Y

∗; the suboptimality was calcu-
lated as �Yval − Y ∗�/Y ∗. From Table 3, we can easily
obtain the mean standard errors as the sample stan-
dard deviations divided by 10 (the square root of the
sample size, 100). It is clear that both the bias and the
suboptimality are generally significantly greater than
zero, with the bias averaging around 2% of the AVF
and the suboptimality averaging around 1%.

Table 3 Optimization Bias for Different Values of �

Suboptimality
Bias in percent in percent

� Mean STD Mean STD

0.500 1.19 1.45 −0�64 0.58
0.900 1.66 1.25 −0�84 0.61
0.925 1.59 1.45 −0�77 0.63
0.950 1.83 1.44 −0�96 0.70
0.980 1.59 1.42 −0�87 0.54
0.991 1.14 1.66 −0�69 0.63
0.996 0.42 1.85 −0�38 0.41

Note. For each discount factor, we performed a random sampling of the data
100 times. Each time we use a random calibration sample of 20% of the
entire data set (each with roughly eight million observations) and the other
80% as a validation sample. We found the optimal policy in each such MDP
and present in the table the bias, Ycal−Yval, normalized by Y ∗. We also present
the suboptimality, Yval − Y ∗, normalized similarly. The means of the biases
are significantly greater than zero.
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Figure: Left: Bias; Right: Suboptimality.

§ Both the bias and suboptimality are significant. For a calibration sample containing
1% data (i.e., 1.6 million observations), the average bias is 6.3% and the derived
policy is 2% worse than the true optimal.



Common to many problems

§ “Real” state space is huge with lots of uncertainty and parameters

§ Batch data are available

§ Operative solution: build a smallish MDP (ă 300 states!), solve, apply.

§ Computational speed less of an issue

§ Uncertainty and risk are THE concern (and cannot be made scalar)
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The Question:

How to optimize when the model is not (fully) known?

But you have some idea on the magnitude of the uncertainty.

ñ The Robust MDP framework.
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Soft Motivation: Statistical Learning

Supervised Learning Problem:

§ Training Data: tpxi, yiqu
m
i“1 generated according to unknown distribution.

§ Goal: Find labelling rule Lpxq to minimize generalization error:

Er`px,Lpxq, ytrueqs

§ Problems: Do not know distribution. Control overfitting.



What is Overfitting? An Example1

We want to find a function to fit these samples.

1Adapted from http://www.mit.edu/„9.520/Classes/class02.pdf



What is Overfitting? An Example (Cont.)

Suppose this is the true function.



What is Overfitting? An Example (Cont.)

This is overfitting.



What is Overfitting? An Example (Cont.)

Overfitting solution does not help.



Regularization

§ Fact 1: Overfitting solutions are unnecessarily complicated.

§ Approach 1: Penalizing the complexity of the solution.

min
L

:
m
ÿ

i“1

`pxi,Lpxiq, yiq ` CpLq.

§ CpLq is the regularization term. Typically chosen as a norm function.

§ Adding apples with oranges.



Robustness

§ Fact 2: Overfitting solutions are sensitive to disturbance.



Robustness: an example2

Consider the 10-sample example

2Adapted from http://www.mit.edu/„9.520/Classes/class02.pdf



Robustness: an example (Cont.)

Fitting the samples with an arbitrary degree polynomial

Overfiting



Robustness (Cont.)

Perturbing the sample slightly



Robustness (Cont.)

The solution changes dramatically



Robustness (Cont.)

Degree-2 polynomial fitting



Robustness (Cont.)

Not so sensitive to perturbation



Robustness

§ Fact 2: Overfitting solutions are sensitive to disturbance.

§ Approach 2: Find a robust (w.r.t. sample perturbation) solution.

§ How? Robust Optimization.



Robust Optimization

§ General decision problem:
max
x

upx, ξq.

§ What if ξ is unknown?

§ noisy/incorrect observations

§ estimation from finite samples

§ simplification of the problem

§ Max-min solution.
max
x

min
ξP∆

upx, ξq.



In Supervised Learning: Regularization ” Robustness ” Generalization

§ Approach 1 and Approach 2 are equivalent!

Every learning algorithm must be robust to generalize

2H. Xu and S. M., “Robustness and Generalization”, Machine learning 86, 391-423, 2012.



Markov Decision Processes

§ Defined by a tuple xT, γ, S,A, p, ry:

§ T is the possibly infinite decision horizon.

§ γ is the discount factor.

§ S is the set of states.

§ A is the set of actions.

§ p transition probability, in the form of ptps
1|s, aq.

§ r immediate reward, in the form of rtps, aq.



Markov Decision Processes

§ Total reward is defined:
§ R̃ “

řT
t“1 γ

t´1rtpst, atq.

§ Classical goal: find a policy π that maximizes the expected total reward under π.



Robust MDPs & Robust Optimization

§ The robust MDP framework is inspired by robust optimization.

§ To illustrate, consider a linear program where A are subject to ambiguity:

Minimize:xc
Jx Subject to:Ax ě b.

§ Two central assumptions of the decision model:

(a) The uncertainty is represented in a set-inclusive way: there is a set U , known to the
decision maker, such that the true unknown parameter Ã belongs to U (the uncertainty
set).

(b) The decision is a here and now decision and must “work” for all admissible parameters.
More precisely, x cannot depend on the true value of Ã.

§ Under these two assumptions, the decision problem can be formulated as the
following robust linear program:

Minimize:x cJx Subject to: Ax ě b; @A P U .
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Robust MDPs

§ S and A are known, p and r are unknown.

§ Set inclusive uncertainty: p and r belong to a known set (“uncertainty set”).

§ When in doubt—assume the worst!

Look for a policy with best worst-case performance. Problem becomes:

Maximize:π min
pp,rqPU

Eπ,p,rs

#

T´1
ÿ

t“1

γt´1r̃tps̃t, ãtq

+

. (1)
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Outline

Part One: Solving robust MDP

1. Uncoupled uncertainty

The paradise

2. Distributional robustness

Does God play dice?

3. Coupled uncertainty

When we can, when we cannot
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1. Large problems

2. Learning the uncertainty

3. Alternative formulations
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Rectangular uncertainty

Uncertainty uncoupled across different states:
§ Whether a parameter of a state s is allowed to take a certain value does not depend

on the parameter value of other states.

Definition 0.1 (Rectangular Uncertainty Set).

A robust MDP problem pT ,S,A, γ,Uq has a rectangular uncertainty set if we have
U “Â

sPS Us, where
Â

stands for the Cartesian product, and Us is the projection of U
onto the parameters of state s.

§ Most widely studied case, due to computation efficiency.

§ SA-Rectangular: parameters of different (s,a) pairs are uncoupled.

§ Conservative to a fault.
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Finite horizon case

§ Let Uπt phtq denote the total robust reward-to-go for policy π following history ht:

Uπt phtq fi min
pp,rqPU

Eπ,p,rht
t

T´1
ÿ

j“t

r̃jps̃j , ãjqu;

§ U˚t phtq denote the optimal robust reward to go following history ht, i.e.,

U˚t phtq fi max
πPΠHR

t

Uπt phtq.



Main Result

§ A Bellman Equation

U˚T phT q “ 0;

U˚t phtq “ max
qPPpAst q

min
ppst ,rst qPUst

ÿ

aPAst

qpaqtrstpst, aq `
ÿ

s1PSt`1

pstps
1|st, aqU

˚
t`1pht, a, s

1qu

§ Implies Markovian Property.

§ Handwaving proof:

§ The optimal reward-to-go U˚t phtq is the value of a Stacklesberg game .

§ Due to rectangular uncertainty, the game only depends on st.
§ Solve the optimal reward-to-go from time t equals solving the min-max problem where

the payoff is the t-th step reward plus the optimal reward to go of the t` 1 step.
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min
ppst ,rst qPUst
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Robust Dynamic Programming

1. For all s P ST , set U˚T psq “ 0. Set t “ T .

2. Let t “ t´ 1.

3. For all s P St, let

U˚t psq “ max
qPPpAsq

min
pps,rsqPUs

ÿ

aPAs

qpaqtrsps, aq `
ÿ

s1PSt`1

psps
1|s, aqU˚t`1ps

1qu;

q˚psq “ arg max
qPPpAsq

min
pps,rsqPUs

ÿ

aPAs

qpaqtrsps, aq `
ÿ

s1PSt`1

psps
1|s, aqU˚t`1ps

1qu;
(2)

4. If t “ 1, output π˚ “
Â

sPS q
˚psq. Otherwise, go to Step 2.

§ Computing Equation (2) requires solving a robust LP for linear uncertainty set.

§ Similar results hold for SA-rectangular cases, except the optimal robust strategy
becomes deterministic.
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Discounted total reward

§ States will be visited more than once, leading to two different models.

§ Non stationary model: for different visits of a state, its parameter can change.

§ Stationary model: for different visits of a state, its parameter remains the same.

§ The optimal strategy for both models is the same.
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Discounted total reward

1. The robust value V ˚γ is the unique solution to the following set of equations:

V ˚γ psq “ max
qPPpAsq

min
pps,rsqPUs

ÿ

aPAs

qpaq
!

rsps, aq `
ÿ

s1PS
γpsps

1|s, aqV ˚γ ps
1q

)

.

2. The robust action q˚s is given by

q˚s P arg max
qPPpAsq

min
pps,rsqPUs

ÿ

aPAs

qpaq
!

rsps, aq `
ÿ

s1PS
γpsps

1|s, aqV ˚γ ps
1q

)

.

3. A stationary strategy π˚ is a robust strategy if π˚ “
Â

sPS q
˚
s and q˚s is a robust

action for all s P S.

§ Essentially a Robust Value Iteration algorithm.

3A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision Processes with Uncertain Transition
Matrices”, Operations Research, 2005.
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Robust Policy Iteration

1. Arbitrarily initialize π0 P ΠMR; n “ 0;

2. Policy Evaluation: find a vector Ṽ which solves the following fixed point equation.,

Ṽ npsq “ min
pps,rsqPUs

ÿ

aPAs

qπnpsqpaq

#

rps, aq `
ÿ

s1PS
γpps1|s, aqṼ nps1q

+

. (3)

3. Policy Improvement: let

qn`1
s P arg max

qPPpAsq
min

pps,rsqPUs

ÿ

aPAs

qpaq
!

rsps, aq `
ÿ

s1PS
γpsps

1|s, aqṼ nps1q
)

;

and set πn`1 “
Â

sPS q
n`1
s .

4. Let n “ n` 1, and go back to Step 2 if the stopping criterion is not satisfied.



Average reward case

§ Aim to solve

Maximize:π min
p,rPU

lim
TÑ8

1

T
Ep,r,π
s

#

T
ÿ

t“1

r̃ps̃t, ãtq

+

.

§ Results only known for two special cases.

1. SA-rectangular and finite uncertainty set.
2. SA-rectangular and unichain.

§ Solution: γ-discounted case with γ Ò 1.
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Complexity Results

1. Complexity of VI and PI algorithms essentially not hurt by robustness in the
rectangular case.

2. Underlying uncertainty set (inner optimization) determines complexity.



Outline

Part One: Solving robust MDP

1. Uncoupled uncertainty

The paradise

2. Distributional robustness
Does God play dice?

3. Coupled uncertainty

When we can, When we cannot



Distributional robustness

§ A criticism to Robust MDP (and Robust Optimization):
§ Set-inclusive approach to model uncertainty
§ Hard to incorporate probabilistic information, such as “bad thing could happen, but the

chance is no more than 5%”.

§ Distributionally robust optimization:
§ The uncertain parameter is a random variables following an unknown distribution.
§ The distribution belongs to a known set of distributions C, “ambiguity set”.

§ Objective: Maximize the expected performance under the most adversarial distribution
in the ambiguity set
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Distributionally robust MDP

§ For π P ΠHR, we denote its performance under parameters pair pp, rq, starting at
state s P S as

vpπ,p, r, sq fi Eπ,p,rs

#

T´1
ÿ

t“1

γt´1rtpst, atq

+

.

§ Then, when the parameter follows distribution µ P C, the expected performance of π
is denoted by

wpπ, µ, sq fi Epp,rq„µtvpπ,p, r, squ “
ż

vpπ,p, r, sqdµpp, rq.

§ The distributionally robust MDP then seeks the strategy that maximizes its worst
expected performance, i.e., a strategy π˚ P ΠHR such that

inf
µPC

wpπ, µ, sq ď inf
µ1PC

wpπ˚, µ1, sq.



Distributionally robust MDPs

§ Rectangular ambiguity set, i.e.,

C “ tµ|µ “
â

sPS
µs, µs P Cs,@s P Su.

§ Distributionally robust MDP = Robust MDP:

Define UpCq “ tpp, rq|Dµ P C : p “ Eµp; r “ Eµru. Then we have

max
πPΠHR

min
µPC

Ep,r„µtEπ,p,rs r

T´1
ÿ

t“1

γt´1rtpst, atqsu

“ max
πPΠHR

min
p,rPUpCq

Eπ,p,rs t

T´1
ÿ

t“1

γt´1rtpst, atqu.

Moreover, the optimal strategies for the two problems are the same.
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Coupled uncertainty: an example

Many real problems naturally call for a robust MDP with coupled uncertainty, such as the
Dynamic Ellsberg’s problem:

§ An urn contains 30 red balls and 60 other balls – all of them either blue or green.

§ A ball is drawn at time 1 from the urn.

§ At time 2, it is revealed whether the drawn ball is green or not.

§ Finally, at time 3, the color of the drawn ball is revealed. A reward of `1 is obtained
if the ball is red.

§ Assume pb, the probability that the ball is blue, is unknown, except pb P rp, ps. Then
obviously the uncertainty set is non-rectangular.
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Coupled uncertainty: an example
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1
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1
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𝛼

1
3
+ 𝛼

1

𝑡1 𝑡2 𝑡3

Figure: State transition for dynamic Ellsberg’s problem.



Bad news: it is hard to solve

§ Suppose the uncertainty set is represented by linear constraints. Then deciding
whether the worst-case expected total reward

min
pp,rqPU

Eπ,p,rs

#

T´1
ÿ

t“1

r̃tps̃t, ãtq

+

is over a threshold is strongly NP-hard.

§ Proof is by reduction to integer programming.



Silver lining

§ In some cases, the optimal strategy can be obtained efficiently.

§ In general, resort to approximation approaches.



Special case 1: Lightning does not strike twice

How many times can lightning strike?
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Lightning does not strike twice

§ Limiting the number of deviation allowed

UK “
!

pp, rq : ps “ Pnom, rs “ Rnom except at most

s1, .., sK where psi , rsi P pUpsi , Ursi q
)

§ If K “ 0, Naive MDP

§ If K “ |S|, standard robust MDP

§ K in between, interesting regime
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K-rectangular uncertainty sets

§ But “close to” being rectangular.

§ Rectangularity means conditional projection of the uncertainty set remains same.

§ For LDST, there are K ` 1 possible conditional projection of the uncertainty set.
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LDST - solution approach

§ Robust MDP with LDST uncertainty set can be solved efficiently
§ Insight: history of parameter realization matters, but its sufficient statistics is the

number of deviation.

§ Expand the state space to incorporate the number of parameter deviations observed.
§ Reduce the problem to a robust MDP with rectangular uncertainty set, on the expanded

state space (aka “lifting”).

§ Similar ideas hold for other k-rectangular uncertainty sets.
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LDST - solution approach illustration



Special case 2: uncertain reward

§ The transition parameters are known, and the uncertainty only affect the reward
parameter.

§ Insight: One-to-one relationship between the state-action frequency and the policy.

§ The uncertainty only affects the total reward accumulated for certain state-action
frequency.

§ Use the dual LP form of MDP.
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Uncertain reward

Solve the following robust LP:

Maximize:x min
rPU

ÿ

sPS

ÿ

aPAs

rps, aqxps, aq

Subject to:
ÿ

s1PS
xps1, aq ´

ÿ

sPS

ÿ

aPAs

γpps1|s, aqxps, aq “ αps1q, @s1 P S;

xps, aq ě 0, @s P S, a P As.

(4)

The optimal policy at state s is given by qspaq “ xps, aq{
ř

a1PAs xps, a
1q.



Approximation: Linear decision rule

§ In general, even evaluating the performance of a fixed policy π is NP-hard.

§ A conservative approximation of the performance (i.e., lower bound) based on linear
decision rule.

§ The uncertainty model: the reward parameters are known, and the transition
parameters are affine to some (uncertain) underlying parameters, i.e.,

pξp¨|s, aq fi Ksaξ ` ksa, for ξ P Ξ

where Ξ is the set of the underlying parameters.

§ Fix a stationary policy π and a parameter ξ. The transition kernel and the reward
parameter of the resulting MRP are P̂ pπ, ξq and r̂pπq respectively.



Approximation: Linear decision rule

§ In general, even evaluating the performance of a fixed policy π is NP-hard.

§ A conservative approximation of the performance (i.e., lower bound) based on linear
decision rule.

§ The uncertainty model: the reward parameters are known, and the transition
parameters are affine to some (uncertain) underlying parameters, i.e.,

pξp¨|s, aq fi Ksaξ ` ksa, for ξ P Ξ

where Ξ is the set of the underlying parameters.

§ Fix a stationary policy π and a parameter ξ. The transition kernel and the reward
parameter of the resulting MRP are P̂ pπ, ξq and r̂pπq respectively.



Linear decision rule cont.

§ For fixed π and ξ, the value function vpπ, ξq is the optimal solution w˚ to the
following optimization problem

Maximize:w
ÿ

s

αpsqws Subject to: w ď r̂pπq ` γP̂ pπ, ξqw, @s P S,

where αp¨q is the initial state distribution.

§ Then, the worst-case expected performance of policy π, i.e., minξ α
Jvpπ, ξq is given

by the following

Maximize:wpξq min
ξPΞ

ÿ

s

αpsqwspξq

Subject to: wpξq ď r̂pπq ` γP̂ pπ, ξqwpξq, @s P S.
(5)

§ Difficult to solve (5) because wpξq can be an arbitrary mapping.
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Linear decision rule cont.

§ If we restrict wpξq to a certain function form easy to optimize, then we get a lower
bound, i.e., a conservative approximation of the robust performance of strategy π.

§ Restricting wpξq to be a constant function gives the value function of π evaluated
with the worst parameter in the smallest rectangular uncertainty set that contains U .

§ More general function form means tighter approximation.

§ For example, the set of affine functions of ξ, i.e., wpξq “Wξ ` w0.
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Linear decision rule cont.

§ Linear decision rule approximation for evaluating the robust performance of π:

Maximize:wpξq,w0,W min
ξPΞ

ÿ

s

αpsqwspξq

Subject to: wpξq ď r̂pπq ` γP̂ pπ, ξqwpξq, @ξ P Ξ

wpξq “Wξ ` w0.

(6)

§ Depending on Ξ, the formulation can be solved efficiently, or readily approximated.

§ Finding the optimal policy (w.r.t. the approximation) leads to a bi-linear optimization
problem that is still difficult to solve.

§ Iterative optimization heuristics.
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problem that is still difficult to solve.
§ Iterative optimization heuristics.



Outline

Part Two: Extensions

1. Large problems

2. Learning the uncertainty

3. Alternative formulations.



Large scale problems

§ Thus far we have looked at methods that compute the exact solutions given the
models and the uncertainty sets of the MDP.

§ For MDPs with very large or continuous state spaces this becomes intractable ñ
function approximation.

§ Value iteration and policy iteration based methods.

§ Assumes rectangular uncertainty throughout.

§ The focus on ADP, not RL.
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Fitted robust value iteration

§ Adapt fitted value iteration to the robust MDP setup.
§ To ensure convergence, we use the non-parametric approach for value function

appoximation.

§ A finite set of m representative states SR “ ts1, . . . , smu.
§ The value of any other state s is computed by

V psq “
m
ÿ

j“1

kps, sjqV psjq (7)

where k is a fixed and pre-determined kernel function.
§ Moreover, the kernel function satisfies

@s P S,
m
ÿ

j“1

|kps, sjq| “ 1.

This is called an averager
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where k is a fixed and pre-determined kernel function.
§ Moreover, the kernel function satisfies

@s P S,
m
ÿ

j“1

|kps, sjq| “ 1.

This is called an averager



Fitted Robust Value Iteration

1. Set V0 “ 0. Set i “ 0.

2. Let i “ i` 1.

3. For all s P SR, let

Vipsq “ max
qPPpAsq

min
pr,pqPUs

ÿ

a

qpaq
“

rps, aq ` γEpps,aqVi´1

‰

where @s, Vi´1psq “
ř

s1PSR kps, s
1qVi´1ps

1q.

4. If stopping condition satisfied, stop. Otherwise, go to Step 2.



Fitted robust value iteration

§ Main idea: To perform robust Bellman operator onl on representative set, and
interpolate the value of other states via (7).

§ Convergence is guaranteed.

§ The expectation Epps,aq can be costly to evaluate in general but can be replaced with
a finite-sample average.

§ The algorithm gives the value function, a policy is computed via:

@s, qpsq “ arg max
qPPpAsq

min
pr,pqPUs

ÿ

a

qpaq
“

rps, aq ` γEpps,aqV
‰

. (8)



Fitted robust Q-value iteration

§ For SA-rectangular uncertainty sets, fitted robust Q-value iteration is simpler to use.

§ The general idea is to work with approximate state-action values (i.e., Q-values)
instead of state-values.

§ Given Q-value Qps, aq for each ps, aq P SA
R , we have, for any ps, aq P S ˆA,

Qps, aq “
m
ÿ

j“1

kps, a, sj , ajqQpsj , ajq, (9)

and let the kernel to be an averager.

§ Similar algorithm, similar guarantees. Main advantage is a deterministic policy π can
be easily obtained via:

@s, πpsq “ arg max
a

Qps, aq “ arg max
a

ÿ

ps1,a1qPSA
R

kps, a, s1, a1qQps1, a1q,

which computation is significantly less costly.
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Fitted Robust Q-Value Iteration

1. Set Q0 “ 0. Set i “ 0.

2. Let i “ i` 1.

3. For all ps, aq P SA
R , let

Qips, aq “ min
pr,pqPUs,a

rps, aq ` γEpps,aqVi´1

where @s, Vi´1psq “ maxa
ř

ps1,a1qPSA
R
kps, a, s1, a1qQi´1ps

1, a1q.

4. If stopping condition satisfied, stop. Otherwise, go to Step 2.



Robust least square policy iteration

§ Another class of widely used function approximation structure is the linear value
function approximation.

§ For linear value function approximation, value iteration (even the vanilla, non-robust
one) may diverge.

§ Use policy iteration type algorithms instead.



Policy Evaluation

§ The value function is approximated by a linear architecture.
§ For each state s, an m-dimensional feature vector φpsq is defined. Its value is given by
V psq “ φpsqJw.

§ In matrix form, Φ is the feature matrix.

§ For policy π, let Lπ be the associated robust Bellman operator

LπV psq “ min
pr,pqPUs

ÿ

a

qπpaqrrps, aq ` γEpps,aqV s.

Then its robust value V π satisfies

V π “ LπV π.

§ Caveat: V π will not belong to the range of Φ in general.
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Policy Evaluation

§ Ideally, seek a projection ΠξV
π “ Φwπ such that wπ “ arg minw }V

π ´ Φw}ξ for
some norm } ¨ }ξ.

§ Unfortunately, wπ cannot be obtained directly since V π is unknown.

§ Instead, we seek a w that satisfies the following projected robust Bellman equation,

Φw “ ΠξLπΦw. (10)

The projection matrix Πξ finds the least squares solution with respect to the norm
}x}ξ “

ř

i ξix
2
i “ xJΞx where Ξ “ diagpξq.

§ Very similar to how LSPI is derived (which solves the projected Bellman equation).
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Solving projected robust Bellman equation

§ The operator Lπ is non-linear and in general we cannot guarantee the existence nor
the uniqueness of the solution w of (10).

§ Different from solving projected bellman equation, and calls for the following
assumption.

Assumption. There exists an ergodic Markov chain on S with transition given by
p̂ps1|sq, which satisfies the following:

1. There exists β P p0, 1q such that for each s, s1 P S and p P Us,

γ2pps1|s, πpsqq ď β2p̂ps1|sq. (11)

2. ξ is the stationary distribution of the Markov chain defined by p̂ps1|sq.
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Solving projected robust Bellman equation

§ Under this assumption, there exists a unique solution w˚ to (10) such that

}Φw˚ ´ V π}ξ ď
1

a

1´ β2
}V π ´ΠξV

π}ξ.

§ Also, ΠξLπ is a contraction. Hence we can solve (10) for w˚ by starting with an
arbitrary w0 and iterating as follows:

wk`1 “ pΦ
JΞΦq´1ΦJΞLπΦwk.

§ For large state space, it may not be feasible to compute the above exactly. Instead,
we can approximate the above using a small subset of sample states.



Policy Improvement

§ A policy iteration type algorithm constitutes two steps: policy evaluation and policy
improvement.

§ Given V̂ π “ Φw˚, one can derive a greedy, randomized policy π1 as follows:

@s, π1psq P arg max
qPPpAsq

min
pr,pqPUs

ÿ

a

qpaqrrps, aq ` γEpps,aqΦw˚s.

§ For the SA-rectangular case, one can derive a deterministic policy π1 given
Q̂π “ Φw˚ in a much simpler way:

@s, π1psq P arg max
a

φps, aqJw˚.

§ Performance guarantees are the same as standard LSPI.



Back to (Soft) Motivation: Robustness, Regularization and Generalization

§ Regularized RL
À

Improves policy exploration
À

Improves stability during training
À

Computationally efficient
Á

Not encompassing model uncertainty

Fact 0-a: Regularized RL is not always robust to model uncertainty

§ Robust RL
À

Encompasses model uncertainty
Á

Computationally expensive

Fact 0-b: Robust RL is much more expensive than regularized RL



Contributions

1. MDP with policy regularization
ðñ Robust MDP with uncertain reward

(1.a) Policy-gradient theorem for reward-robust MDPs

2. Robust MDP with uncertain reward and transition
ðñ MDP with policy + value regularization

(2.a) Twice regularized (R2) Bellman operators

3. R2 MDPs with converging R2 MPI
ùñ Computationally efficient robust planning

4. R2 MDPs with converging R2 DQN
ùñ Scalable robust learning

4“Twice regularized MDPs and the equivalence between robustness and regularization”, E. Derman, M.
Geist, S. M. Neurips, 2021



Preliminaries

MDP - pS,A, γ, r, P q
Initial state distribution - µ0

Policy - π P ∆S
A

§ Standard value function - fixed point v “ rπ ` γP πv

§ Regularized value function - fixed point with modified reward
v “ prπ ´ Ωpπqq ` γP πv

Uncertainty set U :“ ˆsPSpPs,Rsq

§ Robust value function - fixed point for worst model v “ minpPπ ,rπqPUπtr
π ` γP πvu

Fact 0-a: Regularized RL is not always robust to model uncertainty

Fact 0-b: Robust RL is much more expensive than regularized RL



Reward-robust MDPs

[Iyengar, 2005] The robust value function for policy π is the optimal solution of:

max
vPRS

xv, µ0y s. t. v ď min
pPπ ,rπqPUπ

trπ ` γP πvu

Fact 1: Policy Regularization ðñ Reward Robustness

Theorem 0.2.
If U “ tP0u ˆ pr0 `Rq, then the robust value function for policy π is the optimal solution
of:

max
vPRS

xv, µ0y s. t. vpsq ď prπ0 ` γP
π
0 vqpsq ´ σRsp´πsq for all s P S .



Uncertainty sets from regularizers

Neg. Shannon KL Neg. Tsallis
Regularizer

ÿ

aPA
πspaq lnpπspaqq

ÿ

aPA
πspaq ln

ˆ

πspaq

dpaq

˙

1

2
p‖πs‖2 ´ 1q

Reward Un-
certainty „

ln

ˆ

1

πspaq

˙

,`8

˙

ln pdpaqq `RNS
s,apπq

„

1´ πspaq

2
,`8

˙

Transition
Uncertainty tP0u tP0u tP0u



General Robust MDPs

Fact 2: Policy + Value Regularization ðñ General Robustness

Theorem 0.3.
If U “ pP0 ` Pq ˆ pr0 `Rq then the robust value function for policy π is the optimal
solution of:

max
vPRS

xv, µ0y s.t. vpsq ď pr
π
0 ` γP

π
0 vqpsq ´ σRsp´πsq ´ σPsp´γv ¨ πsq

for all s P S, where rv ¨ πssps
1, aq :“ vps1qπspaq.



General Robust MDPs: Ball uncertainty sets

Ball uncertainty:
Ps :“ tPs P RX : ‖Ps‖ ď αPs u
Rs :“ trs P RA : ‖rs‖ ď αrsu, @s P S

The robust value function for policy π is the optimal solution of:

max
vPRS

xv, µ0y s. t. vpsq ď prπ0 ` γP
π
0 vqpsq ´ ‖πs‖pαrs ` αPs γ‖v‖q

l jh n

rTπ,r
2
vspsq

for all s P S



Twice regularized MDPs (R2 MDPs)

Definition 0.4.
Let Ωv,r2pπsq :“ ‖πs‖pαrs ` αPs γ‖v‖q. The R2 Bellman operators are defined as

rT π,r
2
vspsq :“ T πpP0,r0q

vpsq ´ Ωv,r2pπsq @s P S,
rT ˚,r

2
vspsq :“ max

πP∆S
A

rT π,r
2
vspsq “ Ω˚v,r2pqsq @s P S .

Twice regularized value function - fixed point
v “ prπ0 ´ Ω1pπqq ` γpP

π
0 v ´ Ω2pπ, vqq “: T π,r

2
v

Ñ Twice regularized operators are contracting

Ñ Convergence of any planning algorithm (VI, PI, MPI)



Planning in R2 MDPs

Table: Vanilla, R2 and robust planning algorithms. Computing time in sec.

Vanilla R2 Robust
PE 0.008˘ 0. 0.02˘ 0. 54.8˘ 1.2

MPI (m “ 1) 0.01˘ 0. 0.03˘ 0. 118.6˘ 1.3

MPI (m “ 4) 0.01˘ 0. 0.03˘ 0. 98.1˘ 4.1

Ñ R2 MPI time complexity „ vanilla MPI time complexity



Learning in R2 MDPs

Ñ Provable convergence to optimal robust q-value

Ñ Extension to R2 DDQN

...But how to compute ‖vt‖ in deep?

4E.D., Y. Men, M. Geist, S. Mannor. Twice regularized MDPs: The equivalence between robustness
and regularization. Under review at JMLR
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Learning in R2 MDPs

Ñ Provable convergence to optimal robust q-value

Ñ Extension to R2 DDQN

...But how to compute ‖vt‖ in deep?
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§ Sample batch Bt from replay buffer

§ Compute empirical norm ‖vt‖2
Bt :“

ř

sPBt vtpsq
2

§ Include moving average p1´ βq‖vt´1‖2
Bt´1

` β‖vt‖2
Bt



§ Sample batch Bt from replay buffer
§ Compute empirical norm ‖vt‖2

Bt :“
ř

sPBt vtpsq
2

§ Include moving average p1´ βq‖vt´1‖2
Bt´1

` β‖vt‖2
Bt



R2 DDQN

Table: Vanilla, R2 and robust DDQN. Average computing time of a learning step in 0.1ˆms.

Environment Vanilla Robust R2

Cartpole 2.5˘ 0.1 76.9˘ 15.3 8.3˘ 1.0
Acrobot 2.3˘ 0.1 73.0˘ 15.3 8.1˘ 0.2
Mountaincar 2.5˘ 0.8 77.6˘ 16.0 8.2˘ 0.5

Ñ R2 DDQN time complexity „ vanilla DDQN time complexity



R2 DDQN



Discussion

§ Scalable robust RL with a theoretical grounding

Ñ Robust policy-gradient for general robust MDPs

Ñ Extension to continuous control?

§ Reward σRsp´πsq VS Transition σPsp´γv ¨ πsq

Ñ Rewrite v “
ř8
t“0 γ

tpP πqtrπ

Ñ σPsp´γv ¨ πsq “ σPsp´γp
ř8
t“0 γ

tpP πqtrπq ¨ πsq

Ñ Receding horizon regularization?
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Outline

Part Two: Extensions

1. Large problems

2. Learning the uncertainty

3. Alternative formulations.



Question: where do I get uncertainty sets from?

There are two types of parameter uncertainty.

§ Stochastic uncertainty: there is some true p and true r, just that we don’t know the
exact value.

§ Adversarial uncertainty: there is no true p and r, each time when the state is visited,
the parameter can vary.

§ Due to model simplification, or some adversarial effect ignored.

§ If I can collect more data, can I
§ Identify the type of the uncertainty?
§ Learn the value of the stochastic uncertainty?
§ Learn the level of the adversarial uncertainty?
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Formal setup

§ MDP with finite states and actions, reward in r0, 1s.

§ For each pair ps, aq, given a (potentially infinite) class of nested uncertainty sets
Ups, aq.

§ Each pair ps, aq can be either stochastic or adversarial, which is not known.

§ If ps, aq is stochastic, then the true p and r are unknown

§ If ps, aq is adversarial, then its true uncertainty set (also unknown) belongs to Ups, aq.

§ Allowed to interact in the MDP many times.

6S. Lim, Huan Xu, S. M., “ Reinforcement Learning in Robust Markov Decision Processes”. Math.
Oper. Res. 41(4): 1325-1353 (2016)



Formal setup

§ MDP with finite states and actions, reward in r0, 1s.

§ For each pair ps, aq, given a (potentially infinite) class of nested uncertainty sets
Ups, aq.

§ Each pair ps, aq can be either stochastic or adversarial, which is not known.

§ If ps, aq is stochastic, then the true p and r are unknown

§ If ps, aq is adversarial, then its true uncertainty set (also unknown) belongs to Ups, aq.

§ Allowed to interact in the MDP many times.

6S. Lim, Huan Xu, S. M., “ Reinforcement Learning in Robust Markov Decision Processes”. Math.
Oper. Res. 41(4): 1325-1353 (2016)



Formal setup

§ MDP with finite states and actions, reward in r0, 1s.

§ For each pair ps, aq, given a (potentially infinite) class of nested uncertainty sets
Ups, aq.

§ Each pair ps, aq can be either stochastic or adversarial, which is not known.

§ If ps, aq is stochastic, then the true p and r are unknown

§ If ps, aq is adversarial, then its true uncertainty set (also unknown) belongs to Ups, aq.

§ Allowed to interact in the MDP many times.

6S. Lim, Huan Xu, S. M., “ Reinforcement Learning in Robust Markov Decision Processes”. Math.
Oper. Res. 41(4): 1325-1353 (2016)



Challenge and Objective

§ For adversarial state-action pairs, the parameter can be arbitrary (and adaptive to
the algorithm).

§ Hence not possible to exactly identify the type of uncertainty.

§ Not possible to achieve diminishing regret against optimal stationary policy “in
hindsight”. That is, may not take full advantage if the adversary chooses to play nice.

§ Can achieve a vanishing regret against the performance of the robust MDP knowing
exactly p and r for stochastic pair, and the true uncertainty set of adversarial pair.
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Main intuition

§ When purely stochastic, one can resort to RL algorithms, such as UCRL (which
consistently uses optimistic estimation) to achieve diminishing regret.

§ However, adversary can hurt.



Main intuition

s0

s1

s3

s2

s4

g∗ g∗ + β

g∗ − α

g∗ + β

a1 a2

a3

§ 2β ă α ă 3β.

§ Choose solid line in phase 1 (2T steps), dashed line in phase 2 (T steps).

§ The expected value of s4 is g˚ ` β´α
2 , and the expected value of s1 is

g˚ ` 3β´α
4 ą g˚.

§ The total accumulated reward is 3Tg˚ ` T p2β ´ αq. Compared to the minimax
policy, the overall regret is non-diminishing.



Main intuition

Be optimistic, but cautious.

§ Using UCRL, start by assuming all state-action pairs are stochastic.

§ Monitor outcome of transition of each pair. Using a statistic check to identify pairs
with overly optimistic beliefs: assumed to be stochastic but indeed adversarial, or
assumed to have an uncertainty set smaller than its true uncertainty set.

§ Update the information of pairs that fail the statistic check, and re-solve the minimax
MDP.



The algorithm: OLRM

Input: S, A, T , δ, and for each ps, aq, Ups, aq

1. Initialize the set F Ð tu. For each ps, aq, set Ups, aq Ð tu.

2. Initialize k Ð 1.

3. Compute an optimistic robust policy π̃, assuming all state-action pairs in F are
adversarial with uncertainty sets as given by Ups, aq.

4. Execute π̃ until one of the followings happen:
§ The execution count of some state-action ps, aq has been doubled.
§ The executed state-action pair ps, aq fails the statistic check. In this case ps, aq is added

to F if it is not yet in F . Update Ups, aq.
5. Increment k. Go back to step 3.



Computing Optimistic Robust Policy
Input: S, A, T , δ, F , k, and for each ps, aq, Ups, aq, P̂kp¨|s, aq and Nkps, aq.

1. Set Ṽ k
T psq “ 0 for all s.

2. Repeat, for t “ T ´ 1, . . . , 0:
§ For each ps, aq P F , set Q̃k

t ps, aq “ mintT ´ t, rps, aq `minpPUps,aq pp¨qṼ
k
t`1p¨qu.

§ For each ps, aq R F , set

Q̃k
t ps, aq “ mintT ´ t, rps, aq ` P̂kp¨|s, aqṼ

k
t`1p¨q

` pT ` 1q

d

1

2Nkps, aq
log

14SATk2

δ
u.

§ For each s, set Ṽ k
t psq “ maxa Q̃

k
t ps, aq and π̃tpsq “ arg maxa Q̃

k
t ps, aq.

3. Output π̃.

Robust to adversarial, optimistic to stochastic.
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Statistic check
§ When ps, aq R F , it fails the statistic check if:

n
ÿ

j“1

!

P̂kj
p¨|s, aqṼ

kj

tj`1p¨q ´ Ṽ
kj

tj`1ps
1
jq

)

ą p2.5` T ` 3.5T
?
Sq

c

n log
14SATτ2

δ
.

§ When ps, aq P F , it fails the statistic check if

n
ÿ

j“n1`1

"

min
pPUps,aq

pp¨qṼ
kj

tj`1p¨q ´ Ṽ
kj

tj`1ps
1
jq

*

ą 2T

c

2pn´ n1q log
14τ2

δ
.

§ If ps, aq fails the statistic check, add ps, aq into F , and update Ups, aq as the smallest set in
Ups, aq that satisfies

n
ÿ

j“n1`1

"

min
pPUps,aq

pp¨qṼ
kj

tj`1p¨q ´ Ṽ
kj

tj`1ps
1
jq

*

ă T

c

2pn´ n1q log
14τ2

δ
.



More on statistic check

§ Essentially checking whether the value of actual transition from ps, aq is below
what is expected from the belief of the uncertainty.

§ No false alarm: with high probability, all stochastic state-action pairs will always pass
the statistic check; and all adversarial state-action pairs will pass the statistic check if
Ups, aq Ě U˚ps, aq.

§ May fail to identify adversarial states, if the adversary plays “nicely”. However,
satisfactory rewards are accumulated, so nothing needs to be changed.

§ If the adversary plays “nasty”, then the statistic check will detect it, and
subsequently protect against it.



Performance guarantee

Theorem 0.5.
Given δ, T , S, A and U, if |Ups, aq| ď C for all ps, aq, then the total regret of OLRM is

∆pmq ď O
«

T 3{2p
?
S `

?
Cq

c

SAm log
SATm

δ

ff

for all m, with probability at least 1´ δ.

The total number of steps is τ “ Tm, hence the regret is ÕrT p
?
S `

?
Cq
?
SAτ s.



Performance guarantee

§ What if U is an infinity set?

§ We consider the following class:

Ups, aq “ tηps, aq ` αBps, aq : α0ps, aq ď α ď α8u X PpSq (12)

Theorem 0.6.
Given δ, T , S, A, U as defined in Eq. (12), the total regret of OLRM is

∆pmq ď Õ
”

T
´

S
?
Aτ ` pSAα8Bq

2{3τ1{3 ` pSAα8Bq
1{3τ2{3

¯ı

.

for all m, with probability at least 1´ δ.



Infinite horizon average reward

§ Assume for any p in the true uncertainty set, the resulting MDP is unichain and
communicating.

§ Similar algorithm, except that computing the optimistic robust policy is trickier.

§ Similar performance guarantee: Op?τq for finite U, and Opτ2{3q for infinite U.



Action Robustness
A trembling hand model

πmixα pπ, π1q “

#

π, w.p. 1´ α.

π1, w.p. α.

The policy π1 is potentially adversarial.
Continuous extension: agent chooses a, adversary can modify to p1´ αqa` αa1.

AR-DDPG:

1. Train Actor

2. Train Adversary

3. Train Critic for the joint policy

6C. Tessler, Y. Efroni, S. M., “Action Robust Reinforcement Learning and Applications in Continuous
Control”. ICML 2019: 6215-6224
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Some results

§ Robustness: uncertainty ` transfer to unseen domains

§ A gradient based approach for robust reinforcement learning with convergence
guarantees

§ Does not require explicit definition of the uncertainty set
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Outline

Part Two: Extensions

1. Large problems

2. Learning the uncertainty

3. Alternative formulations.



Alternative formulations

§ Robust MDP uses the minimax objective scheme.

§ Some may argue the solution can be too conservative.

§ Alternative formulations to mitigate sensitivity to parameter uncertainty:

1. the robustness performance tradeoff method;
2. the chance constraint method; and
3. the minimal regret method.

§ Computationally more challenging than robust MDP.
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Robustness Performance Tradeoff

§ Suppose the decision maker is given a description of the MDP including both the
nominal parameter and the uncertainty set of the parameter.

§ Likely case vs all possible scenarios.

§ To find a policy that achieves a good tradeoff between the (nominal) performance
and the robustness.

§ P pπq and Rpπq be the nominal performance and worst-case performance of π.

§ Goal: find Pareto efficient policies.

§ Computationally hard in general. Optimal policy can be non-Markovian.

§ Focus on uncertain reward case.

7H. Xu, S. M., “The Robustness-Performance Tradeoff in Markov Decision Processes”, NIPS 2006:
1537-1544
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Uncertain reward case – finite horizon

§ Let cλt psq to be the optimal tradeoff value from time t on at state s, i.e.,

cλt psq “ max
πPΠHR

tλPtpπ, sq ` p1´ λqRtpπ, sq u,

where Ptpπ, sq and Rtpπ, sq are the reward-to-go under nominal and worst
parameters from time t.

§ Robust Bellman equation holds:

cλt psq “ max
qPPpAsq

!

min
rsPUs

“

λ
ř

aPAs r
0ps, aqqpaq ` p1´ λq

ř

aPAs rps, aqqpaq
‰

`

ř

s1PSt`1

ř

aPAs pps
1|s, aqqpaqcλt`1ps

1q

)

.

§ The whole Pareto front can be computed for polytope uncertainty sets, using
Parametric Linear Programing.
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Uncertain reward case – infinite horizon discounted total reward

§ One-to-one relationship between state-action frequency and vectors belonging to the
following polytope X :

ÿ

aPAs1

xps1, aq ´
ÿ

sPS

ÿ

aPAs

γpps1|s, aqxps, aq “ αps1q, xps, aq ě 0, @s,@a P As.

§ Thus, R-P tradeoff is a robust LP:

Maximize: inf
rPU

ÿ

sPS

ÿ

aPAs

rλrps, aqxps, aq ` p1´ λqrps, aqxps, aqs

Subject to: x P X .

§ For polytope uncertainty set, robust LP can be rewritten as a parametric linear
program to find all Pareto efficient policies.
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Percentile Optimization / Bayesian

§ Percentile optimization: to handle parameter uncertainty by considering the
parameters as random variables and following the Bayesian point of view.

§ Reward vector r and transition probability p are random variables with joint
probability distribution functions fr and fp.

§ Measure policies in the following chance-constrained form:

Maximize:y,π y

Subject to: Pp„fp,r„fr

#

Ep,r,π

«

T
ÿ

t“1

γt´1rpst, atq

ff

ě y

+

ě 1´ ε.

§ the expectation is taken over inherent randomness of the MDP for a fixed parameter
p, r, whereas the probability is over the randomness on the parameters.

8E. Delage, S. M., “Percentile Optimization for Markov Decision Processes with Parameter
Uncertainty”. Oper. Res. 58(1): 203-213 (2010)
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Uncertain reward case

§ When transition probability is exacty known. The chance constrained MDP is
equivalent to a chance constrained LP:

Maximize:y,x y

Subject to: Pr„fr

`

rJx ě y
˘

ě 1´ ε

x P X ,

§ Chance constrained LP is NP-hard in general.

§ For certain class of distributions, chance constrained LP can be solved efficiently. For
example, when fr is a Gaussian distribution and ε ă 0.5.



Uncertain transition probability

§ Much more computationally challenging.

§ Only known results is when fp follows a Dirichlet prior.

§ For Dirichlet prior, second order approximation is used to evaluate a policy, and find
the optimal policy.
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Posterior Uncertainty Sets: Online Construction of Uncertainty Sets

§ Bayes-Adaptive Decisions (BAD) is a difficult model (POMDP)

We offer a robust alternative:

§ Dirichlet prior on distribution over next states.

§ Observation history H up to time h

§ Time h - current step and t - current episode

pPh
sapψsaq “ tpsa P ∆S : ‖psa ´ p̄sa‖1 ď ψsau

p̄sa “ Erpsa | Hs is the nominal transition.

This uncertainty set is

§ Rectangular:
pPh “

â

sPS,aPA

pPh
s,a

§ Updated online according to new observations
9Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, S. M., “A Bayesian Approach to Robust

Reinforcement Learning”, UAI 2019: 648-658



Uncertainty Robust Bellman Equation (URBE)

§ Posterior robust Q-value random variables satisfy a robust Bellman recursion

Q̂hsa
D
“ rhsa ` γ inf

pP pPhsa

ÿ

s1,a1

πhs1a1psas1
pQh`1
s1a1

§ Posterior worst-case transition: pphsa P arg min
pP pPhsa

ř

s1,a1 π
h
s1a1psas1

pQh`1
s1a1

Theorem 0.7 (Solution of URBE).

There exists a unique mapping w that satisfies the URBE:

whsa “ νhsa ` γ2
ÿ

s1PS,a1PA
πhs1a1Etppp

h
sas1qw

h`1
s1a1

§ Approximate Q-values as N pQ, diagpwqq.



Deep Learning Approximation

Q-head uses robust TD error. URBE layer uses approximation.



§ DQN/DQN-UBE: Overly sensitive to change of dynamics

§ Robust DQN: Overly conservative



Discussion

§ Adding URBE as a variance bonus leads to less conservative solutions

§ DQN-URBE encourages safe exploration by implicitly updating the uncertainty set

§ DQN-URBE is able to adapt to changing dynamics online

§ Connections to Thompson sampling and pseudo-Bayesian approaches



Summary

Part One: Solving robust MDPs

1. Uncoupled uncertainty: All is known

2. Distributional robustness: Most is known

3. Coupled uncertainty: Some is known



Summary

Part Two: Extensions

1. Large problems: + Can do policy gradients; continuous space, time and actions; +
Solve robotic tasks.

2. Learning the uncertainty: domain adaptation; Bayes adaptive formulations; hardness
results.

3. Alternative formulations: Sim2Real; revisiting persistence; partial observability, ???



Many Challenges Remain

1. Bayes-adaptive domain adaptation: 0-shot and few-shot robust learning

2. Robustness in context

3. Learning with humans: LLMs and soft feedback

4. In-scene persistence (objects/agents) and video games/autonomous vehicles

5. Small data regimes: Medical applications, climate, smart grids

I am recruiting PhD students/postdocs. Interested? mailto:shie@technion.ac.il

mailto:shie@technion.ac.il



