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Intrinsic Motivation in Reinforcement Learning
to guide exploration and task-agnostic learning
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Vision: Versatile Learning Robots 

Imagine we had robots that can be trained to perform new tasks quickly 
and that become dexterous…

Valuable assistants for humans in: 
● collaborative assembly
● planting trees
● care
● sustainable agriculture
● ...

[Kuka]

[bergkvistanna karin@tuvie.com]

(frauenhofer ipa)

[Polybot.eu]

Need Learning!



Georg Martius <georg.martius@tue.mpg.de>3

Developmental Learning

What are the generic driving principles?
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Intrinsic motivation
gain sensorimotor coordination
information theory and dynamical systems-based 
intrinsic motivation

gaining control of environment and 
learn skills
competence-based methods in hierarchical 
reinforcement learning

visit particular states
empowered, causally impactful, or 
regular situations

gaining understanding
surprise based motivation, predicted information gain 
in unsupervised reinforcement learning

➢ Sensorimotor coordination – Dynamical balance 
Homeokinesis (Der 2001, Der & Martius, 2011)
Predictive Information maximization (Martius, Der, Ay, 2013)
Differential extrinsic plasticity (DEP) (Martius, Der 2015)
DEP-RL (Schumacher  2023)

➢ Curiosity, Prediction Error, Surprise (Schmidhuber 1991-, Pathak 2017)

➢ Free Energy principle (Friston 2006 -)

➢ Predicted Information Gain (Sommer & Little 2012)
Reduction of Epistemic Uncertainty (Pathak 2019+, Vlastelica  2021,
 Sancaktar 2022)

➢ Learning progress, competence 
(Schmidhuber 1991-, Oudeyer 2005-, Baldassarre 2007-,

Blaes  2019, Colas 2019-)

➢ Skill Diversity (Eysenbach 2018, Gumbsch 2018-2023,  Vlastelica @EWRL)

➢ Adversarial selfplay (OpenAI, Plappert et al 2021)

➢ Empowerment (Polani et al 2005-)
Causal action influence (Seitzer et al 2021)

➢ Regularity (Sancaktar @EWRL)

Task-agnostic learning  (not comprehensive)
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Principles of early sensorimotor coordination?
➢ general principle should  avoid trivial solutions

const (dark room) random structured

➢ Dynamical Systems: no trivial fixed points, balanced dynamics (critical)
➢ Information Theory: Predictive information (PI) (Mutual Information between past and future)

time time time

sensor
values
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Self-organizing behavior

Der, GM. The Playful Machine, 2012
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Differential Extrinsic Plasticity
intrinsic motivation to create coordinated behavior

Generalization of 
differential Hebbian learning 

● new term: using inverse model 
of sensor response  Differential Hebbian (Kosko 1986)

Der, GM, PNAS 2015
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Dynamical self-consistency

Der, GM, PNAS 2015

What does it do?
● amplify small movements 
● increase velocity correlations
● aims for self-consistency

Behavior generated by C reproduces C by the dynamics

Controller: one-layer network

Weight normalization

Inverse Model
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9 muscles for 
shoulder and elbow

Soft-robot humanoid arm

GM, Hostettler, Knoll, Der. IROS 2017

bottle shaking

Robot: Myorobotics arm, TUM
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Exploration is key

Standard noise exploration:

Schuhmacher, Häufle, Büchler, Schmitt, GM.  ICLR, 2023

works for torque driven systems
Daniel HäuflePierre Schumacher Isabelle Wochner
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Exploration is key

Standard noise exploration:

fails for over-actuated systems

Schuhmacher, Häufle, Büchler, Schmitt, GM.  ICLR, 2023

2 DoF
6 muscles
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Exploration is key

Standard noise exploration: Embodied exploration:

DEP: like a Hebbian learning rule:
creates coordinated behavior 

[Der, Martius. PNAS 2015]
fails for over-actuated systems

Schuhmacher, Häufle, Büchler, Schmitt, GM.  ICLR, 2023

2 DoF
6 muscles
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Exploration is key

Standard noise exploration: Embodied exploration:

DEP: like a Hebbian learning rule:
creates coordinated behavior 

[Der, Martius. PNAS 2015]
fails for over-actuated systems

Schuhmacher, Häufle, Büchler, Schmitt, GM.  ICLR, 2023

48 DoF
121 muscles
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Reinforcement Learning with Embodied Exploration

➢ Ostrich

Schuhmacher, Häufle, Büchler, Schmitt, GM.  ICLR, 2023

➢ DEP-RL: Interleave exploration and policy optimization at random times

DEP-RL
DEP
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Reinforcement Learning with Embodied Exploration

Schuhmacher, Häufle, Büchler, Schmitt, GM.  ICLR, 2023

➢ DEP-RL: Interleave exploration and policy optimization at random times
DEP

Rollout

MPO MPO MPO

MPO: Maximum a Posteriori Policy Optimisation. Abdolmaleki et al, ICLR 2018
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Let it run

➢ Ostrich

Schuhmacher, Häufle, Büchler, Schmitt, GM.  ICLR, 2023

➢ Exploration is key: DEP-RL: Interleave exploration and policy optimization at random times

DEP-RL  With normal exploration
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Let it run

➢ What about models of humans? 

➢ Exploration is key: DEP-RL: Interleave exploration and policy optimization at random times

Matches force and angle profiles of humans quite closely

No demonstration
only generic rewards:
+ velocity
- energy
- joint limits

Schuhmacher, …, GM, Häufle,  arXiv 2309.02976
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Let it run

➢ What about models of humans?     Time for the falling skeleton ;-)

➢ Exploration is key: DEP-RL: Interleave exploration and policy optimization a random times

Schuhmacher, …, GM, Häufle,  arXiv 2309.02976
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➢ NeurIPS 2023 competition

➢ call to the community to study the 
control of muscle-skeletal systems.
➢ DEP-RL: is a baseline

➢ manipulation and locomotion

sites.google.com/view/myosuite/myochallenge/myochallenge-2023

https://sites.google.com/view/myosuite/myochallenge/myochallenge-2023
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Summary – embodied exploration

 ✓  over-actuated and/or high-dimensional systems can benefit 
from embodied exploration:

- take local sensorimotor feedback into account 
 ✓  can learn to control really complicated biophysical models!

✘  still takes millions of steps
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Causal Action Influence

Seitzer, Schölkopf, GM. NeurIPS 2021
MI(Object; Action | Situation)

Define when actions have causal affect on environment:

➢ dynamics of object is independent of action

local causal models
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Causal Action Influence
Define when actions have causal affect on environment:

➢ dynamics of object is not independent of action

Seitzer, Schölkopf, GM. NeurIPS 2021

object of interest

probabilistic deep network
(gaussian NN)

marginalized (sampling-based)

CAI: causal action influence
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Causal Action Influence
What can we do with this measure?

➢ use as intrinsic motivation

Seitzer, Schölkopf, GM. NeurIPS 2021
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Causal Action Influence
What can we do with this measure?

➢ use as intrinsic motivation

➢ use for active exploration while aiming for task

Seitzer, Schölkopf, GM. NeurIPS 2021

active exploration exploration bonus
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Causal Action Influence
What can we do with this measure?

➢ use as intrinsic motivation

➢ use for active exploration

➢ to speed up learning (prioritized replay)

Seitzer, Schölkopf, GM. NeurIPS 2021
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What about autonomous learning?

➢ Want to leave the robot alone: task-agnostic phase / free play
➢ Later:  come and ask it to perform a task 

➢ Ideally sample efficient enough for a real robot
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Reinforcement learning

needs a prohibitive amount of interactions
for real-world systems

[ionos.com]➢ Approach: learn from experience by trial an error

Aim: Find policy     that maximizes future reward: 

Policy 

experience/
data
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Use a model

Interact with a model of the world: 
→ can do trial and error learning using the model (mental simulation)

Enables to compute reward in imagination

imagined world

Policy 
real experience
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Predictable

Retrospective
 - hard to predict

Properties of Intrinsic Motivations Signals
In RL: intrinsic motivation is typically an additional reward 
➢ Curiosity, Learning progress, Competence
➢ Prediction Error (Intrinsic Curiosity Module)
➢ Novelty search
➢ Adversarial selfplay

➢ Predicted information gain, Reduction of epistemic uncertainty
➢ Empowerment, Causal action influence
➢ Skill diversity
➢ Regularity

Why does it matter? 

Predictable IM signals can be used in model-based optimization!
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Planning at learning time 
➢ use model to collect data nearby real observation
➢ learn to solve a specific task
➢ global optimization

Planning at run-time
➢ use model for planning
➢ perform new task on the fly
➢ optimize finite horizon problem

Two instantiations

Model-based Reinforcement Learning

Need:
Fast optimizer 

Good model

MBPO
Dreamer

PETS
Plan2Explore

MuZero
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Model-based Planning
Cross Entropy Method (CEM)

➢ Sampling based optimization

Georg MartiusShambhuraj SawantMarin VlastelicaSebastian BlaesCristina Pinneri Jan Achterhold Jörg Stückler
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improved Cross Entropy Method

✚ Memory

✚ Colored noise: temporal correlation

Planning with Temporal Correlation
Cross Entropy Method (CEM)

➢ Sampling based optimization

Pinneri, Sawant, Blaes, Achterhold, Stückler, GM. CORL 2020

Power Spectral Density 
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Model-based Planning

Door (sparse reward)

 (environment from DAPG project)

Pinneri, Sawant, Blaes, Achterhold, Stückler, GM. CORL 2020

ground truth models 
(simulator)

Ours



Georg Martius <georg.martius@tue.mpg.de>36

Halfcheetah (running)

Pinneri, Sawant, Blaes, Achterhold, Stückler, GM. CORL 2020

Humanoid Standup

Relocate Fetch Pick & Place

Model-based Planning
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Use learned models... what can go wrong?

The planner will exploit model errors

➢ Non-sense behavior is executed

➢ Need to know what the model does not know

Reward
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Dynamics Models with Uncertainty
➢ separation of aleatoric and epistemic uncertainty

Why? 

➢ aleatoric: avoid

➢ epistemic:
➢ seek to reduce during exploration
➢ avoid during exploitation
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Dynamics Models with Uncertainty
➢ separation of aleatoric and epistemic uncertainty

Why? 

➢ aleatoric: avoid

➢ epistemic: 
➢ seek to reduce during exploration
➢ avoid during exploitation

Ensemble of probabilistic Deep Nets
➢ good estimates of separation both types of uncertainty
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Dynamics Models with n-step Uncertainty
➢ separation of aleatoric and epistemic uncertainty

Why? 

➢ aleatoric: avoid

➢ epistemic: seek to reduce  / avoid during exploitation

What about compounding uncertainties (n-step) 

➢ Non-trivial, but can be solved practically:

➢ PETS: [Chua et al 2018] Probabilistic Ensemble models with Trajectory Sampling

➢ RAZER: [Vlastelica, Blaes, Pinneri, GM. CORL 2021]: Disentangle epistemic and aleatoric for n-steps

➢ Beta-NLL [Seitzer, Tavakoli, GM. ICLR 2022]: make training of prob. NN models work



Georg Martius <georg.martius@tue.mpg.de>42

Properties of Intrinsic Motivations Signals

Why does it matter? 

Predictable IM signals can be used in model-based optimization!

Predictable

Retrospective
 - hard to predict

In RL: intrinsic motivation is typically an additional reward 
➢ Curiosity, Learning progress, Competence
➢ Prediction Error (Intrinsic Curiosity Module)
➢ Novelty search
➢ Adversarial selfplay

➢ Predicted information gain, Reduction of epistemic uncertainty
➢ Empowerment, Causal action influence
➢ Skill diversity
➢ Regularity
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Planning on the fly for an IM signal
➢ intrinsic motivation signals are non-stationary by design
➢ can plan for n-step IM

Planning for Intrinsic Motivation

In model-free RL: 
➢ need to first find the (intrinsically) rewarding regions (value function and policy)
➢ then unlearn as new things become more rewarding etc

  →     slow
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Plan for Predicted Information Gain

Learn autonomously to prepare for future tasks

➢ plan for predicted information gain

?

Sebastian BlaesCansu Sancaktar

Sancaktar, Blaes, GM. NeurIPS 2022

Vlastelica*, Blaes*, Pinneri, GM. CORL 2021Marin VlastelicaCristina Pinneri



Georg Martius <georg.martius@tue.mpg.de>45

How to measure/predict information gain?

➢ Bayesian Neural Nets

➢ Ensembles   ←  are most practical at the moment

epistemic uncertainty = proxy for information gain

“expect to gain information where uncertain because of lacking data”
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Seeking information: 
● Learn a structured mental model of the world (graph net)
● Plan behavior where the outcome is uncertain / expect to learn something 

Sancaktar, Blaes, GM. NeurIPS 2022

Plan for Predicted Information Gain

Same objective as in “Plan To Explore”
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Intrinsically Motivated Learning

Seeking information: 
● Learn a structured mental model of the world (graph net)
● Plan behavior where the outcome is uncertain / expect to learn something

Sancaktar, Blaes, GM. NeurIPS 2022

Free Play
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Intrinsically Motivated Learning

Seeking information: 
● Learn a structured mental model of the world (graph net)
● Plan behavior where the outcome is uncertain / expect to learn something

Sancaktar, Blaes, GM. NeurIPS 2022
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Intrinsically Motivated Learning

Seeking information: 
● Learn a structured mental model of the world (graph net)
● Plan behavior where the outcome is uncertain / expect to learn something

Sancaktar, Blaes, GM. NeurIPS 2022

Free Play
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Interaction Statistics

➢ Planning (for N-steps) matters
➢ Structured model (GNN) increases performance

Policy-basedPlanning-based
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Emergent Behavior

~2h ~6h~1h

Sancaktar, Blaes, GM. NeurIPS 2022

Loose comparison for lifting: (different environment, ...)

SELMO: 10M transitions
CEE-US: 60K transitions  (ours)

Groth et al: “Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious...”
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Perform a task

“Think” and plan to perform a given task:
● use mental model of the world to plan for a given task

Sancaktar, Blaes, GM. NeurIPS 2022
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Perform a task – zero shot generalization

“Think” and plan:
● use mental model of the world to plan for a given task

https://cee-us.github.io/

Sancaktar, Blaes, GM. NeurIPS 2022
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Perform a task – zero shot generalization

“Think” and plan:
● use mental model of the world to plan for a given task

https://cee-us.github.io/

Sancaktar, Blaes, GM. NeurIPS 2022
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Perform a task – zero shot generalization



Georg Martius <georg.martius@tue.mpg.de>56

Could we also use Offline RL?

Perform offline RL to extract task-policy

➢ More difficult tasks did not work!
➢ Lot do to for offline-RL

➢ Bagatella et al @ EWRL:  Goal-conditioned Offline Planning from Curious Exploration
➢ Offline RL often suffer from estimation artifacts: can be circumvented with model-based 

corrections
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Intermediate Summary
➢ Model-based planning works with good planners and ensemble network networks

➢ Uncertainties become instrumental: as intrinsic reward + to make models robust

➢ Predictable Intrinsic Motivation signals + model-based planning → great sample efficiency

➢ First demonstration of: task-agnostic free-play → zero-shot task performance in a difficult setting

➢ Still lots of limitations (e.g. not full RL setup)

~6h
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Put more Structure into Play?

Novel ≠ Useful

Cansu Sancaktar Justus Piater



Georg Martius <georg.martius@tue.mpg.de>59

Put more Structure into Play?

Novel ≠ Useful

What is a generic bias for constructing things?

Cansu Sancaktar Justus Piater
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Put more Structure into Play?

Rouen Cathedral

Neue Aula, Uni Tübingen

Regularity and symmetries are everywhere. 
➢  Regularity as Intrinsic Reward (RaIR)
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Put more Structure into Play?
Regularity = Redundancy in scene description 

➢ Measured by Entropy of some representation 

➢ Example:
Scene Representation Histogram

Sancaktar, Piater, GM. @EWRL

Color is not considered here
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Regularity as Intrinsic Reward

What does it do with 
a perfect model?

Regularity in relative position and color
Every blob is controlled one after the other.
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Regularity as Intrinsic Reward

Sancaktar, Piater, GM. under review

What does it do with 
a perfect model?
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Regularity as Intrinsic Reward

Sancaktar, Piater, GM. under review

Free-play
RaIR + Info-gain
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Regularity as Intrinsic Reward

Sancaktar, Piater, GM. under review

Does it help?
Zero-shot performance:
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Recreate Existing Regularities

● Initialize a regular structure outside of the robot’s reach
● Just optimize for RaIR → Repeating existing regularity is an optimum

Sancaktar, Piater, GM. under review

https://sites.google.com/view/rair-project
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What about Hierarchical Planning?

Poster today
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Summary

➢ Intrinsic motivations help us to formalize exploration strategies 

inductive bias to specify downstream task families

➢ Model-based planning + predictive intrinsic motivation is promising

➢ Regularity as an addition to the intrinsic motivation zoo ;-) 

➢ We are close to have playing robots that become useful?!
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Thank you!
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