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Abstract

Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a reward function from expert demonstra-
tions. Many IRL algorithms require a known transition model and sometimes even a known expert policy, or they at
least require access to a generative model. However, these assumptions are too strong for many real-world applications,
where the environment can be accessed only through sequential interaction. We propose a novel IRL algorithm: Active
exploration for Inverse Reinforcement Learning (AcelRL), which actively explores an unknown environment and ex-
pert policy to quickly learn the expert’s reward function and identify a good policy. AceIRL uses previous observations
to construct confidence intervals that capture plausible reward functions and find exploration policies that focus on the
most informative regions of the environment. AcelRL is the first approach to active IRL with sample-complexity bounds
that does not require a generative model of the environment. AceIRL matches the sample complexity of active IRL with
a generative model in the worst case. Additionally, we establish a problem-dependent bound that relates the sample
complexity of AcelRL to the suboptimality gap of a given IRL problem. We empirically evaluate AceIRL in simulations
and find that it significantly outperforms more naive exploration strategies.
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1. Introduction

Reinforcement Learning (RL; Sutton and Barto, 2018) has achieved impressive results recently, from playing video
games (Mnih et al., 2015) to solving robotic control problems (Haarnoja et al., 2019). However, in many applications,
it is challenging to design a reward function that robustly describes the desired task (Amodei et al., 2016; Hendrycks
etal., 2021). Instead of using an explicit reward function, Inverse Reinforcement Learning (IRL; Ng et al., 2000) seeks
to recover the reward by observing an expert, e.g., an human who already knows how to perform a task. However,
most existing IRL algorithms assume that the transition model, and in some cases, the expert’s policy, are known. In
many real-world applications, this is not given, and the agent needs to estimate the transition dynamics and the expert
policy from samples. Figure 1 shows an illustrative example where the agent can choose between different paths that
have different properties, e.g., walking speeds, and lead to different goals. The agent has to explore the environment
and query the expert policy in order to infer the expert’s reward function.

IRL with sample-based estimation was only recently analyzed formally by Metelli et al. (2021). They decompose the
error on the reward into a contribution from estimating the transition model and estimating the expert policy. Based
on this, Metelli et al. (2021) propose an efficient sampling strategy to recover a good reward function. However, they
assume a generative model of the environment, i.e., the agent can query the transition dynamics for arbitrary states and
actions. In practice, this assumption is unrealistic. The agent in Figure 1 starts in the middle and cannot learn about
the properties of any path without actually exploring the environment.

In this work, we consider IRL with unknown transition dynamics and expert policy and focus on exploring the envi-
ronment in order to recover the expert’s reward function efficiently. To the best of our knowledge, we present the first
paper providing sample complexity guarantees for the active IRL problem without access to a generative model.
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Figure 1: An illustrative example of the Active IRL problem. The agent can choose between four paths that lead to
different objects. It can get action recommendations from an expert but does not know about the properties
of the different paths (the transition dynamics) or the value of different items (the reward function). Ob-
serving the expert actions is not enough to infer a reward function. For example, from observing the expert
recommending to take the yellow path, the agent cannot infer that the human prefers to find the carrot. The
human might prefer to find the treasure but know it is too hard to reach. Therefore, the agent has to ex-
plore the environment and learn about its dynamics to infer a good reward function. AceIRL implements an
exploration strategy that aims to infer which reward functions are consistent with the expert’s recommenda-
tions as quickly as possible. We present experiments on a version of this environment in Section 7.

Our main contributions are:

* We propose the active IRL problem in a finite-horizon, undiscounted Markov Decision Process (MDP) and
characterize necessary and sufficient conditions for solving it (Section 4.1).

* We analyze how the estimation errors of the transition model and the expert policy contribute to the estimation
error of the reward function, extending prior work to the finite-horizon setting. We provide a novel analysis
of how this error affects the performance of the policy, which optimizes the recovered reward function (Sec-
tion 4.2).

* We propose a novel algorithm, Active exploration for Inverse Reinforcement Learning (AceIRL), which ac-
tively explores the environment and the expert policy to infer a good reward function. In each iteration, AceIRL
constructs an exploratory policy based on the estimation error of the recovered reward function (Section 6).

* We consider two different exploration strategies for AceIRL. The first, more straightforward, strategy provides
a sample complexity similar to the algorithm proposed by Metelli et al. (2021), which has access to a generative
model (Section 6.1). The second strategy takes the expected reduction in uncertainty into account (Section 6.2).
This yields a tighter, problem-dependent sample complexity bound at the cost of solving a convex optimization
problem in each iteration (Section 6.3).

¢ We evaluate AcelRL empirically in simulated environments and demonstrate that it achieves significantly better
performance than move naive exploration strategies (Section 7).

The proofs of all results presented in the main paper can be found in Appendix B.

2. Related Work

Most IRL algorithms assume that the underlying transition model is known (Ratliff et al., 2006; Ziebart et al., 2008;
Ramachandran and Amir, 2007; Levine et al., 2011). However, the transition model usually needs to be estimated from
samples, which induces an error in the recovered reward function that most papers do not study. Metelli et al. (2021)
analyze this error and the sample complexity of IRL in a tabular setting with a generative model. They propose an
algorithm focused on transferring the learned reward function to a fully known target environment. Dexter et al. (2021)
provides a similar analysis in continuous state spaces and discrete action spaces, but they still require a generative
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model of the environment. In contrast, we do not assume access to a generative model and thus need to tackle the
exploration problem in IRL.

Some prior work studies active learning algorithms for IRL in a Bayesian framework but without theoretical guar-
antees. Lopes et al. (2009) propose an active learning algorithm for IRL that estimates a posterior distribution over
reward functions from demonstrations, requiring a prior distribution and full knowledge of the environment dynamics.
Relatedly, Cohn et al. (2011) consider a Bayesian IRL setting with a semi-autonomous agent that asks an expert for
advice if it is uncertain about the reward. Cohn et al. (2011) consider a semi-autonomous agent who acts autonomously
when it is confident and asks a human expert for advice otherwise. Similarly to Lopes et al. (2009), they consider a
Bayesian IRL setting to define these acquisition functions, and assume full knowledge of the environment dynamics.
Brown et al. (2018) empirically study active IRL in several safety-critical environments, selecting queries using value
at risk. Kulick et al. (2013) consider active learning for a robotic manipulation task, asking a human expert for advice
in situations with the highest predictive uncertainty. The robot aims to create the most informative situations that are
physically feasible to ask a human overseer for advice. The active learning criterion is the predictive uncertainty about
the label of a specific situation. Similarly, Losey and O’Malley (2018) propose a method to learn uncertainty estimates
from human corrections in a robotics context. All of these papers assume a Bayesian framework and do not provide
theoretical guarantees. In contrast, our setup does not require a prior over reward functions, and we provide theoretical
sample complexity guarantees for our algorithm.

A separate line of work studies sample complexity in imitation learning where the goal is to imitate an expert policy
rather than infer a reward function (Rajaraman et al., 2020; Xu et al., 2020). In particular, Abbeel and Ng (2005) also
focus on exploration and propose to use the expert policy to explore relevant regions, whereas Shani et al. (2022) use
an upper-confidence approach to exploration. Our setting is different because we focus on IRL instead of imitation
learning, and we aim to explore to infer a reward function learn most effectively.

3. Preliminaries

Let us first introduce necessary background and notation that we use throughout the paper.

Markov decision process. A finite-horizon (or episodic) Markov Decision Process without reward function (MDPnR)
is a tuple M = (S; A; P;H;sp), where S is the finite state space of size S; A is the finite action space of size A,
P:S A Y gisthe transition model; H is the horizon and Sg is the initial state. ! In other words, a finite-horizon
MDPnR is a finite-horizon MDP (Puterman, 2014) without the reward function. We describe an agent’s behaviour
with a (possible stochastic) policy 2S [H] T .

Reward function. A reward functionr : S A [H] ¥ [0; Rmax] maps state-action-time step triplets to a reward.
Given an MDPnR M and a reward function r, we denote the resulting MDP by M [ r.

Value functions and optimality conditions. We define the Q-function Q,\},h[r (s; @) and value-function VM;?r(s) of a
policy inthe MDP M [ r at time step h, state S and action a as:
X

QuirSa =msa)+ na@is)PEsiAQupy (12): VM) = n(@is)Quip(sia)
s%;al a
We define the advantage function A,\}lh[r(s; a) as A,\;lh[r(s; a) = Ql\;lh[r(s; a) VM;'Er(S). A policy is optimal if

A,\jlh (s;a)is 0 for each time step h 2 [H], state s 2 S, action a 2 A. We denote the set of optimal policies for
the MDP M [ r with  nqpy-

State-visitation frequencies. We define R,,ho (Sjso) as the probability of being in state s at time h®  h following
policy in MDPnR M starting in state Sp at time h. We can compute it recursively:
X
hh iy — h;h? Q) — i 0. ; hh® L00: .
e (8%S) = Lesimsg and Ny TH(S's) = P(s'is™; @) mo(ajs™) ny (s"js):

SUO;a

1. We can model any initial state distribution as a single initial state by modifying the transitions.
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4. Active Learning for Inverse Reinforcement Learning (Active IRL)

In this section, we first introduce the Active Inverse Reinforcement Learning problem with and without a generative
model (Section 4.1). Then, we define the feasible reward set for finite-horizon MDPs (Section 4.2) and characterize
the error propagation on the reward function and the value function (Section 4.3), extending results by Metelli et al.
(2021) to the finite horizon setting.

4.1 Problem Definition

Our goal is to design an exploration strategy to construct a dataset of demonstrations D such that an arbitrary IRL
algorithm can recover a good reward function from it. To be agnostic to the choice of IRL algorithm, we consider
the set of all feasible reward functions for a specific expert policy. Formally, we consider IRL problems (M; E)
consisting of an MDPNR and an expert policy E, and we define the feasible reward set as follows.

Definition 1 (Feasible Reward Set) A reward function r is feasible for an IRL problem (M; ), if and only if the
expert policy E is optimal in M [ r. We call the set of all feasible reward functions Ry, [ E the feasible reward set. If
we estimate the transition model and expert policy from samples we refer to the recovered feasible set Ry = RM[AE
in contrast to the exact feasible set Rg = Ry E.

Now, we can formalize the goal of Active IRL as finding a sampling strategy that satisfies the following PAC optimality
criterion.

Definition 2 (Optimality Criterion) Let S be a sampling strategy. Let Rg be the exact feasible set and Rp be the

feasible set recovered after observing N 0 samples collected from M and 5. We say that S is (; ;n)-correct if
with probability at least 1 it holds that:

H h e ~oh o .
eégé . ;uz[p gnﬁ]( QM[r(s, a) QM[r(s, a) foreachr 2 Rg;
inf ~ sup  max Qmir(s:a)  Quifr(sia) for each £ 2 R;

r2Rg 2 mpr 52
where  is an optimal policy in M [ r and ™ is an optimal policy in 1A [ .

The first condition states that for each reward in the exact feasible set, the best reward we could estimate in the recov-
ered feasible set has a low error everywhere. This condition is a type of “recall”: every possible true reward function
needs to be captured by the recovered feasible set. The second condition ensures that there is a possible true reward
function with a low error for every possible recovered reward function. This avoids an unnecessarily large recovered
feasible set. This condition is a type of “precision”: if we recover a reward function, it has to be close to a possible
true reward function. Note, that Metelli et al. (2021) consider a similar optimality criterion in their Definition 5.1.
However, they consider a known target environment; hence, our Definition 2 is a stronger requirement.

4.2 Feasible Rewards in Finite-horizon MDPs

Ng et al. (2000) characterize the feasible reward set implicitly in the infinite horizon setting, whereas Metelli et al.
(2021) characterize it explicitly. Here, we provide similar results for a finite horizon.

Lemma 3 (Feasible Reward Set Implicit) A reward function r is feasible if and only if for all S;a; h it holds that:
AMh[r(S; a)=0if fF(ajs) Oand A|\}|h[r(5; a) 0if E(ajs) =0. Moreover, if the second inequality is strict, E
is uniquely optimal, i.e., nypr =T Eg.

E. E. E.
These two conditions are expressed in the terms of the advantage function since Q, [hr (s;a) Vpmq [r (s) =Apm [hr (s; a).
We can conclude from this lemma that a reward function r belongs to the feasible reward set if the advantage function
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of the actions played by the agent is equal to 0, and the advantage function of the actions not played by the agent
is non-positive. In fact, if these conditions hold it is easy to see that the expert policy F is optimal for the reward
function r. The following lemma characterizes the feasible reward set explicitly.

Lemma 4 (Feasible Reward Set Explicit) A reward function v is feasible if and only if there exists an TAn 2
R® o 0hapr) and TVn 2 RSgnopny such that for all s; a; h it holds that:

>
rm(s;8) = An(S;8)1f Eqajsy=og + Vh(S) + P (s's;@)Vha1(s)

s0

Here, the first term ensures there is an advantage function for E and it is O for actions the expert takes and Ay, (s; a)
for actions the expert does not take. The second term corresponds to reward-shaping by the value function.

4.3 Error Propagation

Next, we study the error propagation of estimating the transition model P with ® and the expert policy E with AE. In

particular, we bound the estimation error on the reward as a function of the estimation errors of ® and ~E, extending
a result by Metelli et al. (2021) to the finite horizon setting.

Theorem 5 (Error Propagation) Let (M; ) and (I4;bE) be two IRL problems. Then, for any v 2 R &)

there exists b2 R such that:

(I%:b%)
x
im(s;ia) (s;ai  An(sa)i F(@js) bR@Si+  Var(S)iP(sis;a)  P(s'is; )]

and we can boundVyn ~(H h)Rpaxand An (H  h)Rpax.

It provides a bound on the distance between each reward function in the real feasible reward set Rg to the closest one
in the estimated one Ry . The error depends on the two estimated components and this is reflected as the sum of two
terms, one depending on the estimation of the expert policy and the other of the transition model. The first is the error
on the estimation of the expert policy; in fact, and this error is due to the fact that the recovered policy gives probability
greater than zero to play an action never played by the expert. The second term depends only on the estimation of the
transition model.

In IRL, we cannot hope to recover the expert’s reward function perfectly. Instead, we aim to estimate a reward function
that leads to an optimal policy with performance close to the expert’s policy under the (unknown) real reward function.
For example, suppose a specific state S is difficult to reach in the environment. In that case, the error on the reward
function r(s; ) will not impact the performance of the induced policy much. Formally, we are interested in studying
the error propagation to the optimal value function. The next lemma will be crucial for analyzing this.

5. Recovering Feasible Rewards with a Generative Model

As a warmup, let us first study the sample complexity of a simple uniform sampling strategy with access to the
generative model of M. We assume we can query a generative model about a state-action pair (S; &) to receive a next
state s” P ( js;a) and an expert action ag E(js). This allows us to introduce key ideas and serves as a baseline
to compare later results to. We adapt the infinite-horizon results by Metelli et al. (2021) to the finite-horizon setting,
and our stronger PAC requirement in Definition 2. We first discuss how we can estimate the transition model and the
policy (Section 5.1) before stating the sample complexity of the uniform sampling strategy (Section 5.2).

5.1 Estimating Transition Model and Expert Policy

In each iteration K, let n[(s; a; 83) be the number of times we @served the transitions (S; @; S) at time h up to iteration
k. Also, we define n)(s; a) = ) nli(s; a;s"), and nfi(s) = nl(s; a). Then we can estimate the transition model
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and expert policy by
Py 4 0 h
0 h=p Nk (S;&;S") ng(s; a)
B (s'js; a) = Py (1 R
max(l; o, nR(s;a)) max(1; ng(s))
In Appendix B.3 we derive Hoeffding’s confidence intervals for the transition model and the expert policy. Combining
these with Theorem 5, we can compute the uncertainty on the recoveresd reward as:

Men(@js) =

. 2h(s:a)
CMis;a)=(H h)Rmaxmin 1;2 — kK27 -
where ‘R(s;a) = log 24SAH(n{(s;a))?= . We can show that for any pair of reward functions r 2 Rg and

P 2 Rp, the difference jrn(s;a)  f;n(s; a)j Cli(s; @). This uncertainty estimate will be a key component in all
of our theoretical analysis.

5.2 Uniform Sampling Strategy

In each iteration K, the uniform sampling strategy allocates Npmax samples uniformly over [H] S A. It estimates
the reward uncertainty and stops as soon as H maXn:s:a CE(S; a) . The next theorem characterizes the sample
complexity of uniform sampling with a generative model.

Theorem 6 (Sample Complexity of Uniform Sampling IRL) The uniform sampling strategy fulfills Definition 2 with
a number of samples upper bounded by:
n O H°R,SA=? ;

max

where O suppresses logarithmic terms.

This sample complexity bound appears slightly worse than the one in Metelli et al. (2021), who find (1 ) # which
would translate to H%. This is, however, due to the fact that we consider reward functions that can depend on the
timestep h. If we assume the reward function does not depend on h, we gain a factor of H, obtaining the same result.

6. Active Exploration for Inverse Reinforcement Learning

Let us now turn to our original problem: recovering the expert’s reward function in an unknown environment without
a generative model. This problem is harder since we need to create an exploration strategy to acquire the desired
information about the environment. We now propose a novel sample-efficient exploration algorithm for IRL that we
call Active exploration for Inverse Reinforcement Learning (AceIRL). The algorithm takes inspiration from recent
works on reward-free exploration (Kaufmann et al., 2021) and exploration strategies in RL (Auer et al., 2008). We
divide the explanation of the algorithm into two parts. First, we introduce a simplified version of the algorithm, which
comes with a problem independent sample complexity result (Section 6.1). Next, we introduce the full algorithm,
which considers the expected reduction of uncertainty in the next iteration to improve exploration and maintains a
confidence set of plausibly optimal policies to focus on the most relevant regions (Section 6.2). The full algorithm
provides a tighter, problem-dependent sample complexity bound (Section 6.3). Algorithm 1 contains pseudo-code of
AcelRL, and Appendix B contains the detailed theoretical analysis including proofs of all results discussed here.

6.1 Uncertainty-based Exploration for IRL

The first idea of AcelRL is similar to reward-free UCRL (Kaufmann et al., 2021). Our goal is to fulfill the PAC
requirement in Definition 2. Hence, we start from an upper bound on the estimation error between the performance
of the optimal policy ~ for a reward f 2 Rp in the recovered feasible set and the optimal policy  for a reward
function r 2 Rg in the true MDP M. We will then use this upper bound to drive the exploration. For each timestep
h and iteration k, we define the error:

ei(sia; M) = Qup(sa) Quir(sia): )
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Algorithm 1 AcelRL algorithm for IRL in an unknown environment.

Ju—

: Input: significance 2 (0; 1), target accuracy , IRL algorithm A , number of episodes Ng
Initialize K 0, ¢ H=10
while > =4do
Solve (convex) optimization problem (ACE) to obtain
Explore with policy g for Ng episodes, observing transitions and expert actions
k k+1
Update Ibk e CE, and ik, A (Rp)
Update accuracy g  mMaXa ég (so; @)
end while
return Estimated reward function i

A A A A

—

We can define an upper bound on these errors recursively with CE' (s;a) =0and

X
El(s;a) =min (H h)Rmax;CR(s;a) +  B(s'js; a) max EftY(ssa’) : (EB1)
aO

s0

It is straightforward to show that &(s;a; ;~ ) EJ(s;a) for any two policies ;” . Using this error bound, we
can introduce a simplified version of AcelRL that explores greedily with respect to EE(S; a). We call this algorithm
“AceIRL Greedy”. Note that this is equivalent to solving the RL problem defined by M [ CP; hence, we can use any
RL solver to find the exploration policy in practice. If we explore with this greedy policy, we can stop if:

4max EQ(so;a) (SP1)

We can show that when this stopping condition holds, the solution fulfills the PAC requirement 2. Furthermore,
we show in Appendix B.4 that AceIRL Greedy achieves a sample complexity on order O H°RZ, SA= 2 | which
matches the sample complexity of uniform sampling with a generative model. This is already a strong result implying
that we do not need a generative model to achieve a good sample complexity for IRL. However, it turns out we can

improve the algorithm further.

6.2 Problem Dependent Exploration

AcelRL Greedy is limited in two ways: (i) it explores states that have high uncertainty so far, whereas our goal is to
reduce uncertainty in the next iteration, and (ii) it explores to reduce the uncertainty about all policies, whereas our
goal is to reduce the uncertainty primarily about plausibly optimal policies. To address these limitations, we propose
two modifications that yield the full AceIRL algorithm.

Reducing future uncertainty. The greedy policy w.r.t. EE explores states in which the estimation error on the Q-
functions is large. However, note that this is not exactly what we want, namely, to reduce the uncertainty the most.
In particular, if we explore for more than one episode before updating the exploration policy, we should choose an
exploration policy that considers how the uncertainty will reduce during exploration. Ideally, we would explore with
a policy that minimizes EEH. However, we cannot compute this quantity exactly. Instead, we can approximate it
using our current estimate of the transition model. Concretely, if we have an exploration policy , we can estimate the
reward uncertainty at the next iteration as:

s !

2°R(s:9)
nl(s; a) + Ah(s; a)

éIr<1+1(5; a)=(H h)Rmaxmin 1;2

where A"(s;a) = Ng R,,h (s; ajso) is the expected number of times  visits (S; @) at time h and Ng is the number of

episodes we will explore with . We can use this estimate to find a policy that minimizes our estimate of EEH. While
our original approach was akin to “uncertainty sampling”, we now have a better way to measure the “informativeness”
of choosing an exploration policy. This is a common pattern when designing query strategies in active learning (Settles,
2012). Note, that this argument does not rely on the IRL problem and can be used to independently improve algorithms
for reward-free exploration (cf. Appendix D).
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Focusing on plausibly optimal policies. By exploring greedily w.r.t. EE, we reduce the estimation error of all
policies. However, we are primarily interested in estimating the distance between policies 2 mprand” 2

MR withr 2 Rg and f* 2 Rpg. Of course, we do not know these sets, so we cannot use them directly to target the
exploration. Instead, assume we can construct a set of plausibly optimal policies ™\ that contains all  and " with

high probability. Then, we can redefine our upper bounds recursively as Iél'j (s;a) =0and:

>
REa)=min (H hRmaiCl(sia)+ B(sia) max (jsHEL(sa) 1 (EB2)
) 27k 1
In contrast to (EB1), we maximize over policies in " rather than all actions. Acting greedily with respect to é{g (s;a)
is equivalent to finding the optimal policy g 2 ™ for the RL problem defined by M [ CL‘. To construct the set of
plausibly optimal policies, we use an arbitrary IRL algorithm A . We only assume that A will return a reward function

. . .. N _ - ; N
f« 2 Rp. Then, we can construct a set of plausibly optimal policies as = = f jV -— (s0) V — (so) 10 kg.

We show in Appendix B.5 that ™\ contains both  and " with high probability. This choice is based on ideas by
Zanette et al. (2019).

We can define a stopping condition analogously to (SP1):
4 max El(sp;a) (SP2)

Again, we can prove that if the algorithms stops due to (SP2), then Rg respects Definition 2.

Implementing AceIRL. To implement the full algorithm, we need to solve an optimization problem:

k 2 argmin max Eg.;(so; (S0)) (ACE)
2% 1
The solution to this problem is the exploration policy that minimizes the uncertainty at the next iteration about plausibly
optimal policies. This problem might seem difficult to solve at first, but, perhaps surprisingly, it can be formulated as
a convex optimization problem solvable with standard techniques (cf. Appendix B.6).

6.3 Sample Complexity of AceIRL

In this section, we present our main result about the sample complexity of AceIRL. The result is problem-dependent,

and, in particular, depends on the advantage function A,\;,lh[r(s; a), where r is the reward function in the exact feasible
set Rp closest to the reward function fi\ which belongs to the estimated feasible set Rgy. The advantage function

A,\;,lh[r(s; a) acts similarly to a suboptimality gap: the closer the value of the second best action is to the best action,
the harder it is to identify the best action and infer the correct reward function.

Theorem 7 [AcelRL Sample Complexity] AcelRL returns a (, , N)-correct solution with
" #1
. H°R?

n O min e

SA H*R2 SA 2 |
, mins;a;h(Anhh[r(Si a))? 2

where 1 depends on the choice of Ng, the number of episodes of exploration in each iteration. A,\;,lh (s; ) is the
advantage function of r 2 argmin ;g . MaXn:s:a(m(s;a) fn(S;a)), the reward function from the feasible set Rg
closest to the estimated reward function f.

This result is the minimum of two terms. The first term is problem independent and it is achieved both by AcelRL
Greedy and the full AcelRL. This bound matches the bound we saw previously with a generative model. Hence,
AcelRL achieves the same results without access to the generative model. Using (ACE) can yield a better sample
complexity, represented by the second term in the minimum. This bound depends on two main components: the ratio

1= and the advantage function A,\;,Ih .(s;a). The ratio depends on the choice of Ng, the number of exploration
episodes per iteration. If Ng is small, then the -ratio will be also small. If Ng is large the algorithm will perform
similarly to a uniform sampling strategy. Appendix B.5 provides the full proof of this theorem.
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Uniform sampling TRAVEL (gener. model) Random AcelRL AcelRL
(gener. model) (Metelli et al., 2021) Exploration Greedy (Full)
Four Paths (Figure 1) 1900 71 17840 1886
-~ Ng =50 1560 76 24180 1747 10780 1369
- Ng =100 2000 O 32760 2172 14080 1603
—Ng =200 4000 O 52000 4057 16160 2033
Double Chain
(Kaufmann et al., 2021) 1980 66 23640 2195
—Ng =50 1120 46 16240 842 11580 870
- Ng =100 2000 O 22200 1329 15440 1031
—Ng =200 4000 O 37200 1664 20400 1629
Metelli et al. (2021):
Random MDPs (Ng = 1) 22 1 27 1 22 1 23 1 21 1
Chain (Ng = 1) 78 2 7% 4 161 8 153 8 142 9
Gridworld (Ng = 1) 43 2 3B 2 45 2 46 3 48 2

Table 1: Sample complexity of AceIRL compared to random exploration and methods that use a generative model.
We show the number of samples necessary to find a policy with normalized regret less than 0:4. We report
means and standard errors computed over 50 random seeds each. For each environment, we highlight in bold
the method that achieves the best performance without access to a generative model. If multiple methods are
within one standard error distance, we highlight all of them. Overall, AceIRL is the most sample efficient
method without a generative model if Ng is chosen small enough. In Appendix C.3, we show learning curves

for all individual experiments.
7. Experiments

We perform a series of simulation experiments to evaluate
AcelRL. We simulate a (deterministic) expert policy using an
underlying true reward function, and compare it to the recov-
ered reward functions. Our main evaluation metric is a nor-
malized regret:

Vmir(S0)  Viafr(0) = Vifr(s0) Vi (so) ;
where  is the optimal policy for M [ r, ~ is the optimal

policy for 4 [, and
the optimal policy for M [ ( r).

is the worst possible policy for r, i.e.,

We introduce the Four Paths environment shown in Figure 1,
which consists of four chains of states that have different ran-
domly sampled transition probabilities. One path has a goal
with reward 1; all other rewards are 0. We also evaluate on
Random MDPs with uniformly sampled transition dynamics
and reward functions, the Double Chain environment proposed
by Kaufmann et al. (2021), and the Chain and Gridworld en-
vironments proposed by Metelli et al. (2021). Appendix C.1
provides details on the transition dynamics and rewards of all
environments.

We compare AcelRL and AcelRL Greedy to a uniformly ran-
dom exploration policy, as a naive exploration strategy. Fur-
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Figure 2: Normalized regret (lower is better) of the

policy optimizing for the inferred reward
in the estimated MDP as a function of the
number of samples. The plots show the
mean and 95% confidence intervals com-
puted using 50 random seeds. We use
NE = 50.

ther, we consider uniform sampling with a generative model as well as TRAVEL (Metelli et al., 2021), which can be
more sample efficient because they do not need to explore the environment. Note that TRAVEL is designed to learn
a reward to be transferred to a known target environment. Instead, we use a modified version that uses the estimated
MDP as a target. Appendix C.2 provides more details on our implementations.

Table 1 shows the sample efficiency of all algorithms in all environments, measured as the number of samples needed
to achieve a regret threshold of 0:4 (different thresholds yield similar conclusions; cf. Appendix C). AcelRL is the
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most sample efficient exploration strategy without access to a generative model; but the relative differences between
the methods depend on the environment. In some cases, AcelRL even performs comparably to methods using a
generative model.

In the Four Paths and Double Chain environments, we also vary the Ng parameter. AceIRL performs better for small
values at the computational cost of updating the exploration policy more often. If Ng is too large, using AcelRL can
be as bad as a uniformly random exploration policy. Increasing Ng hurts the performance of AceIRL Greedy more
severely, which does not consider Ng explicitly. Figure 2 shows the normalized regret as a function of the number
of samples in Four Paths and Double Chain. In both cases AcelRL performs best. However, AceIRL Greedy is
worse than random exploration in the Four Paths environment. Hence, we find that the problem dependent exploration
strategy of the full algorithm significantly improves the sample efficiency.

8. Conclusion

We considered active inverse reinforcement learning (IRL) with unknown transition dynamics and expert policy and
introduced AcelRL, an efficient exploration strategy to learn about both the dynamic and the expert policy with the
goal of inferring the reward function as efficiently as possible.

Our approach is a crucial step towards IRL algorithms with theoretical guarantees, but future work is needed to move
to more practical settings. In particular, it would be interesting to extend the approach to continuous state and action
spaces (e.g. using function approximation), and to obtain an efficient algorithm that does not require solving convex
optimization problems. From a theoretical perspective, it would be useful to derive a lower bound on the sample
complexity of the IRL problem, to understand if the IRL problem is inherently more difficult than usual RL. Beyond
IRL, some of our methods could be useful for other settings, such as reward-free exploration (cf. Appendix D).

Sample efficient IRL is a promising way to apply RL in situations where there is no well-specified reward function
available. Of course, even robust IRL algorithms pose a risk of misuse. But, we are optimistic that these methods will
overall lead to safer RL systems that can be used in real applications.
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Appendix A. Overview of Notation

In Table A.1, we provide a reference of the notation and symbols used in our paper.

Appendix B. Proofs of Theoretical Results

B.1 Simulation Lemmas

In this section, we establish several simulation lemmas that we will use throughout our analysis. Some of the results
were already derived in prior work for the infinite horizon setting, e.g., by Zanette et al. (2019) and Metelli et al.

(2021). For completeness, we provide proofs for all results in the finite-horizon setting.

Definition 1 (Occupancy measures) We define R,,ho (Sjso) as the probability of being in state s at timestep h°

following a policy

in MDPNR M starting in state S at timestep h. We can compute it recursively as:

m (818) = Lrgzsg

h:h%+1
M;

(S'js) =

s:a

- - - 0 -
P('is”;8) n(ais®) mr (s"js)

13

h
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Table A.1: Overview of our notation

Symbol Name Signature
M Markov decision process without reward (MDPnR) (S;A;P; H;sp)
S State space
A Action space
P Transition model S AT ¢
H Horizon H2N*
So Initial state S02S
Policy S [HI Y A
r Reward function S A [H] Y [0;Rmax]. Rmax 2 R*
MI[r Markov decision process (MDP) (S;A;P;H;sp;r)
Q,\}Ir;!:r Q-function (of in M [r) S A [HT'R
VM;rp Value function (of inM [r) S [HITR
An [r Advarsltage fgqctipn (;)f inMLr) S A [HIfR
h, - tate-visitation frequency '
M; (Jso) (conditioned on state) HIE s
h State-visitation frequency .
M; (Jso: ) (conditioned on state-action) HI T s
h: . State-action-visitation frequency ¥
M; ( Iso) (conditioned on state) Hl ST A
h; L State-action-visitation frequency ¥
nm; (5 JSo; @o) (conditioned on state) HI St a
Rmrr Feasible setof M [ r
Re =Rmr & Exact feasible set
Ra = RM[,\E Recovered feasible set
Target accuracy 2R*
Significancy 2(0;1)
Ng Number of exploration episodes Ng 2 N*
We define the same probability for state-action pairs analogously:
hih® (0o A0ic o) —
M; (SO, aOJSa a) — 1fs°:s;a°=ag
h;R®+1 0. 0; =< 030 0 h;h? ;
vy (Shajsia)i= p(@js)P(sisi8) v, (sais;a)
sa
as well as
h:h At} — H
M; (SO'aOJS) = h(aolso)lfsﬂ=sg
) . . . -h? .
(s als) = o (@'js)P (sis; 8) [ (s &js)
sa

Because the environment is Markovian, it also holds for h' > h that
h;h? o0:y — h+1;h° , 0. . .
v ©ls) = T (SYs)P (sis;a) n(ajs)
s;a

and equivalently for state-action pairs.

Lemma 2 The value function and Q-function of a policy —in an MDP M [ r at timestep h can be expressed as:

;h _ =< h;h® /0. 0 0. 40
Vurr(s) = m; (Shajs)r(s;a)
h0=h s0;a0
>
:h Cay — h;h® /0. 0: .. .
Quipr(sia) = o (" ljs; @) (s"; )
ho=h s0;a’

14
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Proof We show the result for the value function; the derivation for the Q-function is analogous.

Note that for h = H the statement holds because V,V;'Er (s) = 0. The general result follows by induction. Assume that
for h + 1 the statement holds. Then:

) X ) X ) e )
Vil €77 n@s) msia)+ P(siaVi ()

2 o s o 11
=< =< <

Q77 h@9) Cras;a)+ P(slisia) @ o (6 s o (7 a"YAA
a s? ho=h+1 s%;a%

(C)>< : X X h;h® /.0 0ic0 0. A0

= h(@js)rn(s; a) + m; (878) ne(@js)rmo(s’; a’)
a h'=h+1s0;a°
XX

d R )

@ m (') me(@s")rno(s"; @)
ho=h s%;a°

where (a) uses the Bellman equation, (b) the induction step, (c) uses Definition 1 and relabels sV r sl g” g’ and
(d) uses Definition 1 again and relabels a ¥ a’. |

Lemma 3 (Simulation lemma 1 by Metelli et al. (2021)) Let M be an MDPNR, and r; £ two reward functions with
corresponding optimal policies ;™ . Then,

:h A :h XK X h;h® 0. A0 0. 40 0. 40
Qi (s5:2)  Quin(sia) o (s alsia) (ro(s’s ) (s al))
hi=h s%;al

h A h XK X h;h® /0. 0: 0. 40 0. 40
Vmir(S)  Vage(s) m;  (shafs)(rre(shsa)  fe(s’; @)
ho=h s%;al

Proof Note that QK,,;E',\(S; a) QM;E',\(S; a) for all s;a because ~ is optimal for f. Hence

Qi (5:2) Quia(sia) Quir(sia) Quifa(sia)

>, > G
@ v (s ) (s ) (s’ a))
h0=h s0;a0
where (a) uses Lemma 2. After observing V,(;, E;(S) Vi E}(S), the second result follows analogously. |

Lemma 4 Let M be an MDPNR, r; f* two reward functions with optimal policies ;" . Then,

hore. ~sho. > hh® 0. i h;h? Q0. Alic. 0. 40 0. 40
QM [r(31 a) QM[[‘(SI a) M; (S ’ aJS., a) M;” (S ,aJS, a) (rhO(S va) h-.O(S 1a ))
ho=h s?;a?
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Proof

Quir(Sia)  Quipr(sia) = Quipr(5ia)  Quipa(sia) + (Qmipa(Sia)  Quipr(sia)

@ XX hih® 0. A0 0. A0 0. 0 Ah e Ah e
M; (S ,aJS, a) (rhO(S va) ﬁqO(S !a)) + (QM[f\(Sva) QM[r(S!a))
ho=hs%;a®
XK X X X
@ r,\‘,,ho (s a'js; @) (rpo(s%;a")  Ao(s’; a")) + R,,hOA (s; a'js; @) (Are(s”;a")  rpo(s’; %))
ho=h s%;a’ ho=h s0:a0
XX . o )
= oo (halisia) s (halisia) (re(sha’) (s’ al))
ho=h s?;a0
where (a) uses Lemma 3 and (b) uses Lemma 2. |

Lemma 5 Let M1; My be two MDPNR with transition dynamics P1, Py respectively, ¥ a reward function and a
policy. Then, for any state S and timestep h:

X X

) . 0 . . . AN()
Vaniorr®) Vi (S) = i (8%8) no(@isH(Pa(s"js" ) Pa(s”is"; @)Vpirpr (s”)
ho=h s0;a0;5% More-
;h ;h X X h;h® /.0 0: 0 0: 0. 40 00: 0. 20 h%+1 00
Vit rr®) Vo (8) = v (859) m(@is)(Pa(s”is’@’)  Pa(s¥js” a)Viirpr (™)
h0=h s0;a%;s®
over,
_ . X X _ _ _ o
Vairer ) Vi (s) o (ss) m(@'s)) Pa(s"js’a’)  Pi(s¥js";a’) Vet (s™)

ho=h s°;a°;s°°

Proof We start by writing explicitly the value-functions:

;h h = H 0ice h+1,0 Oia- ;h+1,0 (P ;h+1,.0
V|\/|’2 [r(S) Vl\/|’1 [r(s) = h(aJS) PZ(S JS; a)Vl\/i2 L[r (S ) P]_(S JS; a)Vl\/ly1 L[r (S ) PZ(S JS; a)vl\/i1 [r (S )
a;s?

_X ; 0i e lic sh+1,00 0 - sh+1.0 ;h+1.0
= n@s) (PaAsis;a) Pu(Sis; @)V, r (5) +P2(Sis; @)V, r (8) Vi, pr (8))
a;s’
;h h — > P lia-
Viilte(®) Vil )= n(@s) Pu(slisia)v,
Unrolling the recursion gives the first result; the second result follows similarly: > a;s’
= n@s) (Pus'isia) Pa(s'jsi@))Vpni(s) 4
a;st
Together, the first two results imply the third one because all terms in the sums are non-negative. |
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Lemma 6 Let M1; My be two MDPNR with transition dynamics P1, P2 respectively, r a reward function, and 1, »
optimal policy in M1 [ r and My, [ 1, respectively. Then, for any state S and timestep h:
>

h h > h;ho 0. 0;a0 00: 0. 50 00;c0. 50 h 00
VMl[r(S) VMz[r(S) Mo; 1(5 -S) 1;h(aJS )(P]_(S IS -a) PZ(S Js !a))VMl[r(S )
h?=h s0%;a0;s%

Vaiopr ) Viinpe(S) N, (859) 2n(@isN(P(s"js"5 ") P1(s”is"; )il (s™)
ho=h s%;a0%;s%®

Proof
h h > : i 1:h+1, 0 : 0i e 2:h+1, 0
Vi 8 Ve (8) = 1n@iS)Pi(sis; @)V, rr (S)  2n(@is)Pa(ss; @)V, pr (s)
a;s?
Ln@SP(SIS VLT () 1n(@s)Pa(STisi Vi e ()
_X : i 1:h+1, 0 2:h+1, 0
= 1r@iS)P2(S"isi ) (Vad e () Vi ()
a;s?
+ 1n@S)PLEsia)  PaS'is; @)Vpi T ()
+( 1n@s)  on(@is)Pa(slis a)VyiEr ()
> ) )
Ln(@iS)P2(s'is; A)(Vaditr () Vagie (D)
a;s?

+ 1n@S)PLSsia)  Pa(S'is; @)y ()

where the last inequality uses that  is optimal for My [ r. Unrolling the recursion gives the first result. A similar
argument yields the second results:

X
; ; ; ; ;h ; ian ;h
Ve (S Vi pe(s) = 2n(@iS)P2(Yis; AVpE T () 1n(@is)Pi(sis; )Vpgipr ()
a;s?
. . 1;h+
2:n(@jS)P2(s'js; AV pr (8")
>
. . ;h+1 ;h+1
= 2n(@S)P2(s'is; A)(Vaiifr 8 Vaiipr ()
a;s?
: ; 1:h ; . 1:h
+ 5n@s)P2(Sis; AV () 1n(@is)Pu(stis Vg T ()
R H 5;h+ 1;h+
2n(@is)Pa('is; ) (Vagifr () Vakfr (sD)
a;st

+ Ln(@S)(Pa(s'isia)  Pu(slis; )Vpiipr ()

B.2 Feasible Reward Set

In this section, we characterize the feasible reward set first implicitly, then explicitly, and prove a result about error
propagation. Metelli et al. (2021) provide a similar analysis in the infinite horizon setting.

Lemma 3 (Feasible Reward Set Implicit) A reward function r is feasible if and only if for all S;a; h it holds that:
A,\}lh[r(s; a)=0if F(ajs) Oand A,\},h[r(s; a) 0if E(ajs) = 0. Moreover, if the second inequality is strict, E

is uniquely optimal, i.e., N pr = f Eg.
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Proof The result follows directly from Definition 1. |

Lemma 7 A Q-function satisfies the conditions of Lemma 3 if and only if there exists an TAn 2 RSOAgth and
tVh, 2 RSq such that for everyh;s;a2 [H] S A:

Ehra o) — .
Qmpr(si8) = An(s;8)1¢ Eajsy=0g + Vh(S)

Proof We first show that if Q,\j [hr (s; @) has this form, the conditions of Lemma 3 are satisfied, and then the converse.
E.
Assume Q,, [r: (s;a) = An(s;a)l¢ E(ajs)=0g + Vh(S). Then,
S S
Vmrr (8) = n (@S)Qmr(Si @) = Vn(s):
a
If E(ajs) >0, then Q,VIT [hr (s;a) = VME[;'; (S), which is the first condition of Lemma 3. If £ (ajs) =0, QNIT [':, (s;a) =
E. E.
Vi [? (s) An(s;a) Vpm [? (s), which is the second condition of Lemma 3.

For the converse, assume that the conditions of Lemma 3 hold, and let V1 (S) = VME[;P (s) and An(s;a) = VMEE? (s)
Eih .
Qmpr(s;a). [ |

Lemma 4 (Feasible Reward Set Explicit) A reward function v is feasible if and only if there exists an TAp 2
RSOAth[H] and fVp, 2 nghz[H] such that for all s; a; h it holds that:

>
rm(s;8) = An(S;8)1f Eqajsy=og + Vh(S) + P (s's;@)Vha1(s)

s0

: P
Proof Since Q,\j[hr (s;@) =rn(s;a) + P (s's; @)Vh+1(s"), using Lemma 7, we have:
D
E. .
rn(s;a) = Qur(s:a) P (s'js: @)Vh+1(s")
s0

>
= An(S$;@)1f Eaisy=og + Vh(S) + P (s'is;a)Vhaa(s)

s0

Theorem 5 (Error Propagation) Let (M; F) and (I%; b¥) be two IRL problems. Then, for any v 2 R &)

there exists b 2 Ib(m_bE) such that:

>
im(s;ia) n(siai  An(sa)i F(@js) bE@Si+  Var(S)iP(sis;a)  P(s'is; )]

s0

and we can boundVy ~(H h)Rpaxand An (H  h)Rpax.

Proof We start by rewriting I and f* using Lemma 4:

X
rm(s;a) = An(sia)le @jsy=0g T Vn() + P (s"js; @)Vh+a(s")

0

<
th(sia) = An(sia)Llirg@isy=og + (&) +  B('is; a)Phaa(s)

s0
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Algorithm 2 Uniform sampling IRL with a generative model.

1: Input: significance 2 (0; 1), target accuracy , maximum number of samples per iter. Nmax
2: Initialize kK 0, o H
3: while > =2 do

4: Uniformly sample dgx2xe samples from all (s;a;h) 2S A [H]

5: For all samples, observe sample from transition dynamics and expert policy
6: k k+1

7: Update Ibk N, and CE

8: Update accuracy k  H MaXs.a:n CP(s; @)

9: end while

We can choose (w.l.o.g.) Vi, = \?h and Ah =1f E(ajs)=OQAh:

X
rm(s;a) f(s;a) = An(s;a)le eqjsy=og + Vn(S) + P (s'js; @)Vh+1(s")
) > et 0
+ An(S; @) 1¢ne ajs)=0g1f E(ajsy=0g Vh(S) P(s'js; a)Vh+a(s)
> ¥
=An(s;8)1¢ Eqajsy=0g(lerE@isy=0g 1+ Va1 (SD(P (js;a)  B(sjs; a))
> ¢
= An(s;a)lf £jsy=0glfrncais) og + Vi (S)(P (S'is;a)  P(s'js; a))

s0

The result follows by taking the absolute value and applying the triangle inequality. |

B.3 Uniform Sampling IRL with a Generative Model

In this section, we derive sample complexity results for uniform sampling with a generative model (Algorithm 2).
Metelli et al. (2021) proved an analogous result for the infinite horizon setting focusing on transferable rewards. In
contrast, our focus is on the finite horizon setting. Moreover, Metelli et al. (2021) considers to learn a reward that is
transferable to a known target environment. In our setting, instead, we suppose to use the recovered reward function
in the unknown source environment.

Definition 2 (Optimality Criterion) Let S be a sampling strategy. Let Rg be the exact feasible set and Rg be the

feasible set recovered after observing n 0 samples collected from M and E. We say that S is ('; ;n)-correct if
with probability at least 1 it holds that:

; h e A e :
r\él’ll\fé . zsuz[p 213?1( QM[r(s, a) QM[r(s, a) foreachr 2 Rg;
inf  sup max QM;B(S; a) QK,,;B(S; a) for each f 2 Rg;

r2Re 2 MIr s;a

where  is an optimal policy in M [ r and ™ is an optimal policy in 14 [ .

Lemma 8 (Good Event) Let E be a (possibly stochastic) expert policy. We estimate the expert policy with & and
the transition model P with an estimate By from K episodic interactions. Let nE(s; a) and nE(s) be the number
of times state action pairs and states have been observed at time h within the first K episodes, and nE+(s; a) =
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maxfl; nfl(s; a)g. Then,

s

‘(s a)
1¢ E(ajs)=Oglf’\E(ajs) OgAh(S; a) (H h)Rmax m

k ’

‘N(s;a)
Lengais=oglr E@is) 0gAn(si@) (H  h)Rmax 7nhk+(5'a)
skhi’

. . . . . 2°)(s;a
iP(isa) BisaV, " (H DR oo
0 ng (s;a)
> . . : . 20 (s: a
iPEisa) Puisan? ") (H hRme 508
s ne (s;a)

where *(s;a) = log 24SAH (nE+(s; a))%= | holds simultaneously for all (s;a;h) 2S A [H]andk 1with
probability at least 1 . We call the event that these equations hold the good event E and write P(E) 1

Proof We show that each statement individually does not hold wigh probability less than =4, which implies the result
20 (s;a)
nR*(s;a)’

via a union bound. Let us denote 1(s;a;h) = (H h)Rmax First, consider the last two inequalities.

The probability that either of them does not hold is:

X
Prook 1L(ssah)2s A [H]: jPEs;a) B(ss;a)V, "S> i(s;a;h)

s0 1
@ X 0; hrlyi
Pr 9m 0;(s;a;h)2S A [H]: j(P(s’js; a) Ihk(SjS;a))Vr (s = 1(s;a;h)
SO
|
by DX X X > _ )
Pro j(PETsa) BElisia)V, ") > i(siah)
m 0 s;a h=0 s?
© X XX 2 1(s:a: h)2m? XXX
2exp UL 2exp ( “k(s:a))
m 0 s;a h=0 Am(H  h)*Riax m Q s;a h=0
o 1
XXX 2 X 1 2
= TSAHME -~ 120t wh T m Mt g
m 0 s;a h=0 (m ) m 0 m

Step (a) assumes that we visit a state action pair m times, and focuses on these m times the transition model for
the given state-action pair is updated. Step (b) uses a union bound over m and (S; a). Step (c) applies Hoeffding’s
inequality using that we estimate P with an average of samples, and V, " (H  h)Rpax.

r

ch(g-
We show the first two inequalities similarly, with »(s;a;h) = (H h)Rmax nh“f?’j;)
PG
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Prook 1(s;a;h)2S A [H]:j( g@js) "g@is)V, "> 2(s;a;h)

“broom  0san)2s A [HI:( E@i9) AE@S)V, > osiah)
0 X X XK _
Prj( £(ais) ~E@is)V, ()i > 2(s;a;h)

m 0 s;a h=0

2exp 2SSO 20xp( “w(s:a)
m 0 s;a h=0 6“3’( m 0 s;a h=0
XXX > 2
_ . 24SAH(mM*)2 12 m2 12 6 4
m 0 s;a h=0 m 0
A union bound over all equations resultsinP(E) 1 . |
Definition 9 We define the reward uncertainty as s '
. 2h(s;a)
Cl(s;a)=(H h)Rpaxmin 1;2 — k227

Corollary 10 Under the good event E, in each iteration K it holds for all (S;a;h) 2S A [H] that:
inm(s;a) fi(sia)i  C(sia)

Proof

@ x

jm(s;a) f(sia)j  An(sia)le E (ajs)=0g 1 F7E (ajs) 0g + Va1 (SDiP ('is;a)  P(sjs; a)j
s ! ¢
(b) [1s] .
(H WRma 2 258D~ ohigq)
ng (s;a)

where (a) uses Theorem 5 and (b) uses Lemma 8. |

Corollary 11 Let S be a sampling strategy. Let Ry be the exact feasible set and Rp, be the feasible set recovered
after K iterations. If

HmaxCl(s;a) =;
s;a;h

>
then the conditions of Definition 2 are satisfied.
Proof For the first condition of Definition 2, observe:
; :h A ih
inf su max (S a (s a
AT sup maxQui(5ia)  Quifi(sia)
K MLr
@ X X AN A AN A
inf  sup max N (s alis;a) . (shalisia) (rre(shal)  A(sh;al)
2Ry ~ 2 s;a;h ’ ’
K Mare ho=h s?;al
®) H X _ o _ 0
inf  sup max (s als;a) R, (shalis;a) Cf (s%a)
f2Ra ~ 2 s;a;h ' ’
K MLe ho=h s?;al

2H max C{(s; a)
s;a;h
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where (a) uses ?? and (b) uses Corollary 10.
For the second condition of Definition 2, it follows similarly that:

H Hal . ~h . hfa:
rggB Zsurhaﬂ[rrspgg(QM[r(s,a) Qurr(sd) 2H Q{gﬁck(s,a)

Hence, if H maXs:a:h CE (s;a) =2, both conditions of Definition 2 are satisfied. [ |

Theorem 12 (Sample Complexity of Uniform Sampling IRL) With probability at least 1, Algorithm 2 stops at
iteration  fulfilling Definition 2 with a number of samples upper bounded by:

H°R2 ,SA
o 2
Proof First, note s 1
2‘0(s;a
H max Cl(s;a) = H?Rpmnax max 2 M
s;a;h s;ah I’IE (s;a)

. . +
After iterations, we have collected Nmax samples and for each s; a; h, we have: nh (s;a) S”A“ﬁx 1

To terminate at iteration , we need to have for all S; a; hS

2¢h(s; a)
2H2R —_— =
M nh(s;a) 2
which implies
4p2  ch(e
nh(s: a) 32H ngx (s;a)

By using Lemma B.8 by Metelli et al. (2021), we can conclude that the number of samples necessary to ensure
accuracy " is:
H5R2  SA
O —F—

Corollary 13 If the true reward function does not depend on the timestep h, i.e., rn(S;a) = r(S;a), then we can
452
modify Algorithm 2 to only needn O H Riyox SA

max

—ma— samples.

Proof If we know that the reward function does not depend on h we can choose Ci(s;a) = min, Cf(s;a) as a
confidence interval of the reward. Consequently, we can sample all states for a fixed h.

We still need for all s; a:

s
2:h(s; a) ho 32HR2,.‘"'(s; Q)
nh(S; a) E ) n (S, a) 2

2H?Rmax

Again, we use Lemma B.8 by Metelli et al. (2021), but we can eliminate one sum over H, ending up with:
H4R2  SA

max
o 2
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B.4 Sample Complexity of AceIRL in Unknown Environments (Problem Independent)

We are now ready to analyze the sample complexity of AceIRL (Algorithm 1). We first consider the simple version of
the algorithm: AcelRL Greedy. Then, we consider the full version of the algorithm after introducing a few additional
lemma about the policy confidence set. We start by defining the error upper bound and deriving two lemmas that will
help us to show that it is indeed an upper bound on the error we want to reduce.

Definition 14 We define recursively:

X
Ef(s;a)=0; Ef(s;a)=min (H h)Rmax;Cl(s;2)+  B(s's; a) max Epti(sha)
a

SO
where B is the estimated transition model of the environment.

The first lemma shows that the error upper bound can upper bound the error due to estimating the transition model.

Lemma 15 Under the good event E, for all policies  and reward functions r and all S; a; h:

J'Q,{;[r(S; a) Q,\}.h[r(s; a)j El(s;a)

Proof
_ _ D S
Qa5 QupEai=  Peisa)  @)Qg "a)
S a
0; 20 0; a0 ;h+1,.0. 50 = 0; = 0; <0 ;h+1,0. .0
P('is;a)  (@s)Qnr (s ) P'is;a)  (@jsHQur (8% )
0 a0 s0 al

>
P(s'js;a) P (s'js; a) @8Ny (s @)

0 a0
X SN+ N+
+ PElsia) @I8) Qgp (58 QM (i)
S0 a0
hea. le Oiqe > 0; 0 sh+1... sh+1,.
C(s;a) + sis;a)  @Js) Qg (513 Qg (5:2)
s? al

For h = H the result holds trivially. Now assuming it holds for h + 1, we consider step h:

. : =< =< : :
Repd Qup(sai Cisa)+ PBsia) @) Qg (sia) Qupr (sia)

s0 al

Ch(s;a) + > B(s's; a) max Q "*1(s: a) hl(s:a)
k 1 , J [} a0 Qm[r [} QM [r 1]

Ci(sia)+  B(s'js;a) max ELH(s" &) = Ef(s: @)
a
SO

The next lemma shows that the error upper bound can also upper bound the error in estimating the reward function,
which is due to estimating the transition model and the expert policy.

Lemma 16 Under the good event E, for all reward function r, all policies , and allS;2a2 S A:

Ruaped Qg (sai EX(sia)
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Proof For h = H the result holds trivially. Now assuming it holds for h + 1, we consider step h:
in h e e aYi
QG r(5:2) Qm[x(s,a)l

.f‘(S'a) I"(S'a). + Ib(SO's.a)X (aO'SO)'Q ;h+1(SO.a0) Q :h+1(SO.a0)'
jf(Gs; i+ PEisa)  @I)iQgH (s a5
a

iNsia) s+ PEisamaxiQe isia) Qgri(shd))

jfs;a) r(sia)j+  B(ss;a) max LT @) = Ef(s;a)
a
SO

We can now combine the previous two lemmas to show that E is indeed an upper bound on the error we want to
reduce. This implies correctness of AceIRL Greedy, which the following lemma formalizes.

Lemma 17 (Correctness of AceIRL Greedy) If AceIRL Greedy stops in episode K, after sampling n samples, i.e.,
E2(So; k+1(S0)) 2> then it fulfills Definition 2.

Proof Let us define the error . " A h
ex(s;a) = jQmr(sia)  Qmr(siai

where  is the true optimal policy in M [ r, and ” is the optimal policy in 4 [ f, i.e., in the estimated MDP using
the inferred reward function. Then,

el(s:a) = jQuir(5id) Quir(sia) Qg (sia) QT (5ia)]
J'IQM;E‘r (s;a) {7 Qm;ﬂ(s; a)i' +jQ M;B(s; a) QAM;B (s;a)j + jIQAM;Fr(s; a) {7 Qmatr(s: a)i'
EN(sia) Ef(s;a)
2ER(s:2) + Qg (S12) QT (5 )]

where, we used Lemma 15.

Let us consider the remaining term jQ M;Fr(s; a) Q;;A;Er (s; @)j in two steps. First, we have:

Q53 Qgr (si2) ?mys; e Qe (s 9+ ?mg(s; e Qape(s Y+
El(s:a) 0
+ (Ig";qg(s; a) {7 Q/I\Q;Er(s; a; 2ED(s; a);

ER(s;a)

where we used Lemma 16 and the fact that ~ is optimal in the MDP 4 [ . Second, we have:
~ h . h . A h . A h . A h . ;h .
Uar & Qa8 Qop 8 Qi 8 + P, (s +
0

El(s;a)

h e h (e N Y-
+IQM[r(Sia){7QM[r(S!a§ ZEK(S,a),

ER(s;a)

where we used Lemma 15 and the fact that  is optimal in the MDP M [ r. Overall, we find that

Qg1 Qgr(siaj 2EL(s:a);
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and consequently,
ell(s;a) 4E[(s;a):
Note that, E,'(1 (s; @) only sums positive terms, hence:

max Ef(s;a) max E2(so;a) = E2(so; k+1(S0))
s:a;

Hence, if EQ(So; «k+1(S0)) 7. wehave foralls;a;h2S A [H]:
ell(s; a)

which implies correctness according to Definition 2. ]

Next, we will analyze the sample complexity of AceIRL Greedy. Let us first define pseudo-counts that will be crucial
to deal with the uncertainty of the transition dynamics in our analysis. This is similar to the analysis of UCRL for
reward-free exploration by Kaufmann et al. (2021).

Definition 18 We define the pseudo-counts of visiting a specific state action pair at timestep h within the first k
iterations as

ni(s;a) = (s aiso);
i=1

where i is the exploration policy in episode i.
The following lemma allows us to introduce the pseudo-counts when considering the contraction of the reward confi-
dence intervals.

Lemma 19 With probability at least 1~ 5 forall s;a;h;k2S A [H] N, we have:

20(s;2) | 8R(s;a)

min ;
nl(s; a) max nl(s;a); 1

where ‘1(s;a) = log 24SAH(nfi(s; a))?=

Proof This result adapts Lemma 7 by Kaufmann et al. (2021) to our setting.

By Lemma 10 in Kaufmann et al. (2021), we have with probability at least 1~ 5:

Mea) s ()
where cne( ) = log(2SAH=).

We distinguish two cases. Firstlet cne( ) %nﬂ(s; a). Then nfl(s; a) %nrk‘(s; a), and

min M 20(s; @) _ 210g(24SAH (n(s; a))%= )
nf(s;a)’ max(n}(s; a); 1) max(ni(s; a); 1)
2log(24SAH (nE(s;a):4)2: ) S‘E(s;a)

where we use that 10g(24SAHX?= )=x is non-increasing for X > 1, and log(24SAHX?= ) is non-decreasing and
cnt( ) 1
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Now consider let cne( ) > %nﬂ(s; a). Then,

o 20(sia) ent( ) 4%(s; )
min h(ea- ’ < h(a- . h(a- .
ng(s; a) max(ng(s;a);1)  max(n.(s;a);1)
where we used that ‘(s;a) = log 24SAH(nfi(s;a))>= = cne( ) +log 6Nnf(s; a))? ent( ). [ |

The final lemma we need shows relates the error upper bound which is defined using our estimated transition model
to a similar quantity defined using the (unknown) real transitions.

Lemma 20 Under the good event E, we have for any S;é h:
Ef(sia) 2C{(s;a)+  P(s'js;a) maxEQTH(s &)
a
s0

where P is the true transition model that we do not know.

Proof First note that EE(S; aé( H by definition. Now, consider:
EX(s;a) CP(s;a)+  B(s'js;aymax EL (s @)
a
0
=Cl(s;a)+ (P(s's;a) P(s'js;a) + P (s'js;a)) max E}(s"; @)
a
< >
=Cl(s;a)+ (P('s;a) P(S'js;@) maxELH(sh )+ P(s'js;a)) max EQTI(sT )
s | {z—=2 } oo ?
> Ch(s;a)
2C{(s;a) +  P(s'js;a) max EfHi(s"; )
a

g0

where we used the good event and the fact that C,'g can only shrink over episodes. ]

Finally, we can analyze the sample complexity of AceIRL Greedy.

Theorem 21 (AcelRL Greedy Sample Complexity (problem independent)) AcelRL Greedy terminates with an ( ,
, N)-correct solution, with
H5RZ ,SA

max
o 2

Proof Lemma 17 shows that if AceIRL Greedy terminates, then it returns a ( , , n)-correct solution. So, we need to
show that it terminates within iterations and bound

Let us consider the ave;age error, defined by

W= .. (siais)Ef(s; a)
s;a
@ X o, . h X< h+1 0. A0
M: .. (S@JS0) 2C(s;a) + P(sljs;a)ymaxE./""(s;a")
s;a n 0 &
0;h : h < 0; = 0:a0 h+1,.0. 50
= M: ., (S18S0) 2C(s;@) +  P(ss;a) k+1(@]s)E (s @)
s;a s0 al
=2 ¥ .. (s;ais0)Cl(s;a) + ot
s;a
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where we used Lemma 20 in step (a). Unrolling the recursion, results in:
X
0;h’ C i L

w2 M: s (S1@1S0)CF (s;2)
h'=h s;a

If the algorithm terminates at , we have foreachk < ,ands;a;h2S A [H]: <A4E2(So; k+1(S0)). We have

92 = EQ2(So; k+1(S0)); therefore, as long we haven’t stopped, we have ~ 4qQ. Writing out this inequality, yields:

s

0 oh . h H X oh )
49, 8 M: ., (S13JS0)C(s;a)  4HRmax M: ., (S @iS0)
h=0 s;a h=0 s;a

8log(12SAH (nf(s; a))2= )
max(nl(s; a); 1)

Using Lemma 19, we can relate this to the pseudo-counts

8log(12SAH (n(s; a))2= )
max(nf(s; a); 1)

> 0;h ;
< 4HRmax |\/| k+1(S; aJSO)

h=0 s;a
s

8log(12SAHk2= )
max(nfi(s; a); 1)

4H Rimax o (s aiso)
h=0 s;a

Summing the inequality over k = 0;:::T with T < , we obtain

P XXX ) 1
(T+1) 4HRmax 8log(12SAHT?2=)) M. s (S5 S0) S—e——e—
h=0 s:a k=1 max(nfi(s; a); 1)

X X j—( k+1 . Kk .
=4HRmaxp8Iog(128AHT2: ) N, (s:a) np(sia)

h=0 s;a k=1 max(nf(s;a); 1)

where we used the definition of the pseudo-counts in the last equality. Using Lemma 19 by Jaksch et al. (2010), we
can further bound the sum in k:

p <A
(T +1) =4HRmax 8log(12SAHT?2= ) ng(s; @)

h=0 s;a
P pixsi : T+1
4HRmax 8log(12SAHT?2=) SA n, (s;a)
h=0 s;a

,. P P_—p
= 4H?Rpmax  810g(12SAHT2= ) SA T +1

It follows that
)

— P
T+1 4H?Rmax 8SAlog(12SAHT2=)

2 128H%RZ ,SAlog(12SAH(  1)°=)
setting =T + 1.
For large enough , this inequality cannot hold because pT + 1 on the Lh.s grows faster than log( ) on the r.h.s.
Hence, the stopping time is finite. Further, we can apply Lemma 15 by Kaufmann et al. (2021), and follow that
H*RZ . SA

max
o 2

If we observe H samples in each iteration, i.e., Ng = 1, we get a sample complexity of
H°RZ . SA

max
o 2
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B.5 Sample Complexity of AceIRL in Unknown Environments (Problem Dependent)
For the problem dependent analysis, we will need this additional lemma also used by Kakade and Langford (2002).

Lemma 22 (Lemma 6.1 by Kakade and Langford (2002)) For any policy

. . XX, "
Va(s)  Vaige(s) = o (sl )AL (s a)

st;al hd'=h
Proof
Vairr®)  Vaige() .
< i = UH sh+1 .0 ]
= h(@s) rn(s;a)+  P(sis;a)Vyp, ()
a s? 1
= H = 0; ;h+1 0- =< H 0; ;h+1,0
h(@s) rn(s;a)+  P(sis;a)Vyipr (5) h(@is)P (sis; @)Vigr (5)
Xa s0 a;st
= (n@s) n@rsa)+  (p@is)  n(@9)PSis; AV ()
"> ; 0; sh+1 N ;h+1
+ 7 @SPEiS AVENE) Vi (s)
g0
%S< H h = H 0; ;h+1 ;h+1
= (@is)Anr(sia) + n@s)P(sjs;a)(Vmpr (8)  Vipr (8))
a a;s?
Unrolling the recursion yields the result. |

We can now start with the analysis. First, we define the policy confidence set, and show that it indeed contains the
relevant policies under the good event.
Definition 23 We define the policy confidence set as
N _ - ; :
k=T Vigra60)  Vigraso) 10 kg
where £ = A (Rp) is the reward estimated using an IRL algorithm A. We choose \ recursively by solving the

optimization problem

XX O;h /0. 40 h(o0. 40
k= max o (s5a:50)Ci (s’ @)
>N I4;
k 1 h=0s0;al
starting with o = %H.

The following lemma will help us to deal with uncertainty about the transition dynamics.

Lemma 24 Under the good event E, if 2 Ak, then:
. ’h ’h .
JVM[F(S) VM [f\(S)J Kk
VMRS Vigr O«

Proof First by Lemma 5:
X X
. h h . h:h° . . . - 0. . 0. . :h?
Vape®  Vnigr©)i Y (shs) m(@jshiP(s s’ ) P (s )iV (")
ho=h s?;a0%;s% '
XX h;h® (0 0i 0 0. 40
a (8:8) n(@js)Ck(sia)
ho=h s?;a? '
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Then, by Lemma 6:
>

v h y h > h;h® 0. 01" (P (sPis’: b (s%is’: alY)V i)
ME(®) Vg (9) P (shs) @S (P (s al) (s’ a)Vpapr ()
h9=hs0;a0%;s%
h;h® /0. 0: 0 0. 40
Y (s9) w@s)Ck(shd)
ho=h s0;a0 '

And, similarly > >

) i .
Ve VmEe(s) e (819 @B a) P (s a))V g (s7)

ho'=h SO;aO;SOO

(9 w@Is)C( )

ho=h s%;a°
|
Now we show that the relevant policies are always in the policy confidence set, conditioned on the good event.
Lemma 25 Conditioned the good event E, if ;" 2 Ak 1, then 2 Ak.
Proof Let r 2 Rg. Then
h :h :h :h :h :h
; ; LV ;
Vg (9 V" ()= Vgl (8) Vigh () +V, " (8) Vi (s)
(@ ¥ X . ®)
o (it (¢ a) + o alct ) 2«

h0=h s0;a0 ' ho=h s?;a° '

where (a) uses Lemma 2, Lemma 3 and Corollary 10, (b) uses that 2 "« 1 and the definition of . Hence,
h
max Vm[ﬁ((s) an\k( ) 2 10k

and therefore 2 " K- [ |

Lemma 26 Conditioned on the good event E, for every policy — and episodes K® > K, there exists fyo 2 Rgor such
that:

h h
max Vi [ho ) Vm [h((s) 4

Proof Similarly to the proof of the previous lemma we have

Ve ® Vit ® =V ® Var® Van®  Var, ©
XK X

h;h? /L0, 0 h /0. 50 KX h;h? Q0. 0 h® /0. 40
o (:2J8)Cpe (@) + o ($:als)C (sha) 2«
ho=h s%;a° ’ ho=h s0;a0 ’

where we use that the confidence intervals are shrinking with increasing episode number, i.e., ko K-

By combining this with Lemma 24, we get the result:

h h
mgx Vi [fo ) Vm [ (s)

=max Vy2e () V (s)+V (s) V.M (s)+V_" (s) (s) 4y
S IM[f‘k I M[r\ } IM[(’* Iy M[ﬁk} Immk {z M[f‘k}

Kk 2 k K
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Lemma 27 Under the good event E, if N, 2 "« 1and 2"\ then the policy is suboptimal for some reward
o 2 RB forallk® k.

Proof We can observe that
h h — h ~Mah
Vm [fw (S0) Vm [P (S0) =V [ (s0) Vl\/lk[f\ko (So0)

=Vpita. (So) VM“,\k(sonM“m(so) V" (s0)
[MEhe 0, "ML ML (90

@ ()

4 "
+V i (s0) Ve (s0)+V o (s0)  Vihia, (S0)
\¢: M
| M 6 Y {z }
© ()
>10|< K

+\I/M [f‘k(SO){ I\/I[f‘ko (Sog >0

@)
4k

where we applied (a) Lemma 24, (b) Lemma 26, and (c) the definition of Ak and the fact that 2 Ak. Consequently,
is suboptimal for at least some reward function fyo 2 Réko' |

AN

Corollary 28 For o = %,for every kK 0t holds that both ;™ ., 2 "k

Proof We show the statement by induction over k. For k = 0, we have 10 ¢ = H and therefore Ao contains all

policies. Assume that for K 1 the statement holds, ie., ;% 2 Ak 1, and consider k. By Lemma 25, 2 Ak.
Note, that *, ; 2 Ak 1. Hence, by Lemma 26, it follows that ~, ,; 2 Ak because it would be suboptimal otherwise
which is a contradiction. |

The last result we need, is quantifying the size of the policy confidence set.

Lemma 29 Under the good event E, let ¥ 2 argmin g _ MaxXs.a(r(s;a) fx(s;a)), where fc = A (Rek). If
2 ™y, then maxs(V'g;fh[F(s) VM;'EF(S)) 12 .

Proof
ih h
Yar® Var® =Var® Ve Vo ® Vi Ve Ve © 4k
Kk 10 k k
|

Next, we define the error upper bound based on the policy confidence set.
Definition 30 Using ™ we define recursively:

H(s;a)=0

>
Ns;a)=min (H h)Rmax;CR(s;a) +  B(s'js; a) max @jHEP(S"; )

s0 kl

where B is the estimated transition model of the environment. In contrast to Definition 14, the maximization is over
.. LN .
policies in "~ rather than all actions.
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This definition allows us to derive results that are analogous to the problem independent case.

Lemma 31 Under the good event E, for all policies 2 ™ and reward functions ¥ and all s;a2 'S A:

Ru&d Qi) El(sia)

Proof The proof is the same as for Lemma 15, restricting the set of policies to M. |

Lemma 32 Under the good event E, for all reward function r, all policies 2 “oandalls;a2S  A:

R Qg (ia)i Elsia)

Proof The proof is the same as for Lemma 16, restricting the set of policies to " ]

Lemma 33 Under the good event E, we have for any S;a; h :

x
K(s;a) 2CR(s;a)+  P(sljs;a) max  (@'jsHELTI(s"; )
0 27k 1

Proof The proof is the same as for Lemma 33. |

Finally, we can combine these results to analyze the algorithm’s sample complexity.

Theorem 7 [AcelRL Sample Complexity] AcelRL returns a ( , , N)-correct solution with
" #1
H5R2 SA H*R2 ,SA 2 |

n O min > ; T
MiNs;a;h (Anpr (S @))? 2

where 1 depends on the choice of Ng, the number of episodes of exploration in each iteration. A,\;,lh[r (s; @) is the
advantage function of ¥ 2 argmin o . MaXnh;s;a(rh(s;a) f;n(s; a)), the reward function from the feasible set Rg
closest to the estimated reward function f.

Proof First note that the analysis of Theorem 21 still applies; so, in the worst case we get the same sample complexity.
The key difference is that we no longer use the overall greedy policy w.r.t EE, but restrict ourselves to policies in "

Again, we consider the error
hra. — h oo, ~Nohora AN
e (5738 = IQmr(s:8)  Qmir(sid)i

where  is the true optimal policy in M [ r, and ” is the optimal policy in 4 [ #, i.e., in the estimated MDP using
the inferred reward function.

Similar, to the proof of Lemma 17, we can use Lemma 31 and Lemma 32 to show for all policies 2 AE, that:
e (s;a)  4EP(s;a)

which implies the correctness of the algorithm according to Corollary 11 when stopping at

ES(so; k+1(S0)) 7 )
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Now, consider the following condition for all s; a; h:

h(e- h . .
where F 2 argmin, ;g MaxXn:s;a(rn(s;a) fx;n(s;a)). We will (a) show that when this condition holds the previous
stopping condition also holds, and (b) analyze after how many iterations this condition will certainly hold. Together
this will yield the result.

To show that Equation (3) implies Equation (2), we assume that Equation (3) holds. Then, we get by applying
Lemma 33 recursively:

ER(so; k+1(So)) 2 max max o (% a" s a)Cl (s’ )
2% 1 @ h=0s0;a0

KX on e h 0. 20

2 max max m: (S5@5So;a) AM[F(s,a)
27k 1 h=0s;a0

48 1

(®)

@2 max (VS (s0)  Vai%e(s0))
max n S . S _— —
2,\k X M[r 0 MLr 0 48 K 1 4

where (a) uses Lemma 22 and (b) uses Lemma 29.

Next, we analyze after how many iterations Equation (3) holds, which will give a lower bound on the sample com-
plexity result. The argument proceeds similar to the proof of Theorem 21.

Before the algorithm terminates at , we have for all k <
S
2°R(s; a)
max(N/(s; a);)

. A ;h .
D Ay, 5120

<maxCl(s;a) HR
48 kK 1 s;a;h k( ) max

Using similar argument to the proof of Theorem 21, using the same pseudo-counts, we arrive at:

[}

. _ P
; h e —
ggl;lg( AM[F(s,a))ﬁ +1 HRmax 8SAlog(12SAH 2=)

Again, we can use Lemma 15 by Kaufmann et al. (2021) to find that

H3anaXSA 2 1
min3§a;h(Al\;/Ih[F(s; a))? 2

B.6 Computing the Exploration Policy

To run AcelRL, we need to solve the optimization problem:

N = min max < o (s%: % so)ER(s"; ' )
f= X on (s so)CR(S"; )
727k 1h=0sha '

For simplicity let us denote the state visitation frequencies by
. .— 0Oh . a-
h(S! a) - A: (S, a; SO)

N . — 0;h c A
h(s;a): M;A(S’ a; So)
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Let us introduce the following matrix notation

2I 0 0 0 ::: 03
P 1 0 o0 ::: 0
0o P I 0 ::: 0 2 3
f\O
f‘lfl A 0
=80 0 o0 b oaF BN A ,
I 0 0 = 0 0 i a1
0 1 0 0 0 A
00 0 I 0
0 0 0 0 1
2 3
2 3 o0 2 3
0 2/\03 Co
1 A Ci
x:§:::z, x:ﬁ 1%, b= (l) : CZE:::Z’
H A CH
t H 1 1
10k 1

where ¢ is the actual initial state distribution of the environment (which we assume to know). We can now write the
inner maximization problem above as a linear program:

max c'x
X
Ax ="
x 0
The corresponding dual problem is:
min by
y
ATy ¢

Using this we can write the full min-max problem as:

i nT
vy

ATy c(x)

which is a convex optimization problem, if we use:
s

Ch(s;a) =2(H h)Rmax

2log 24SAH (max(1; nfi(s; a)))2=
max(1; N, ,(s;a)

)

where AL, ; (s;a) = N(s;a)+ n(s;a) Ng is the number of times we expect h; s; a to be visited at the next iteration.

Solving this optimization problem yields the state-visitation frequencies "¢ (S;a). We can then find the exploration
policy that induces these state-visitations simply as:

Ah(a-

Y k(s;a) |

k;h(ajs) '_ .
0 "R(si)

33



DAVID LINDNER, ANDREAS KRAUSE, AND GIORGIA RAMPONI

Appendix C. Experimental Details

In this section, we provide more details on our experiments. We discuss the environments in detail (Appendix C.1),
provide some information on the implementation and the libraries and computational resources we used (Appendix C.2),
and we provide more full plots of all experiments we discussed in the main paper (Appendix C.3).

C.1 Details on the Environments

Four Paths. The four paths environment hd4 states and actions:
S=fciliiilosur; iU ey il riosdasiiisdiod; A = fag;az;as;asg;

and a time horizon oH = 20. The agent starts in the center statdrom which can move in four directions: left
(a1), up @), right (@3), or down @4). Each actiorg; has a probability; of failing. If an action fails it moves in the

and two action®\ = fleft; rightg, which correspond to a transition to the left or to the right. When the agent takes an
action, there is &:1 probability of moving to the other direction. The state ; has reward., all other states have
rewardO, and the agent starts in the center of the chaisyat)-,. We choosd. = 31, similar to Kaufmann et al.
(2021). The environment has horizbih= 20.

Chain. The Chain MDP, proposed by Metelli et al. (2021) hésstatesS = fs;; Sp; S3; Sa; Ss; Sy g and 10 actions
A = fay;:::;a100. The agent starts in a random initial state. Taking acignmoves it right along the chain with
probability0:7 and to state, with probability0:3. Any other action moves the agent right with probabi@itg and to
states, with probability0:7. If the agent is in statg,, actiona;o moves it back to statg; with probability0:05. Any
other action moves it te; with probability0:01. The reward i<l in all states excefs, where the reward i8. Metelli
et al. (2021) provide an illustration of the environment in Figure 3. We chblosel0 for the chain.

Gridworld. TheGridworld, proposed by Metelli et al. (2021), is3a 3 gridworld with an obstacle in the center cell
(2;2) and a goal cell at the right center céll 1). The agent starts in a random non-goal cell, and it4hastion one

to move in each direction. If the agent takes an action with probal@i@yhe action fails and the agent moves in a
random direction instead. If the agent is in the center(@R) which has the obstacle, if the agent would move right
it instead stays in the center cell with probabilit. The reward in the goal cell 5 all other rewards ar@. Metelli

et al. (2021) provide an illustration of the gridworld in Figure 6. We chddse 10 for the gridworld.

Random MDPs. We generate random MDPs by uniformly sampling an initial state distribution and transition matrix
and normalizing them. The rewards are sampled uniformly betWesmd 1. Our random MDPs hav@ states4
actions and horizoO.

C.2 Implementation Details

We provide a full implementation of AcelRL in Python, using multiple open sources libraries, inclodkpy and

the SCS optimizer (Diamond and Boyd, 2016; O'Donoghue et al., 2016) for solving the optimization problem in
Appendix B.6, and standard libraries for numerical computing, includimgpy, andscipy . We choose Maximum
Entropy IRL (Ziebart et al., 2008) as an IRL algorithm, but AcelRL is agnostic to this choice.

We ran experiments in parallel on a server with two 64 Core AMD EPYC 7742 2.25GHz processors. We estimate a
total wall-clock time of less than 48 hours for running all experiments presented in this paper, ind0damgdom
seeds each.

C.3 Additional Results

We provide full learning curves for all experiments discussed in the main paper in Figure C.1.
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Figure C.1: Full learning curves for all experiments shown in Table 1. Similar to Figure 2, we show the mean and
95% con dence intervals computed ovB0 random seeds. In addition to the exploration algorithms, we
also show uniform sampling and TRAVEL which are much faster in most cases because they have access
to a generative model.
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Figure D.2: Illustrative experiments for reward-free exploration in the Double Chain environment proposed by Kauf-
mann et al. (2021). The difference to our Active IRL setting is that the agent does not have access to
the expert policy during exploration, but still tries to learn a good model of the environment. During
testing it then gets access to the reward function, and the regret measures the suboptimality of the policy
trained in the agent’s transition model. We find that the ideas used in AceIRL are also useful for batched
reward-free exploration with larget Ng.

Appendix D. Connection to Reward-free Exploration

In the reward-free exploration problem, introduced by Jin et al. (2020), the agent explores an MDPnR to learn a
transition model. In each iteration it chooses a new exploration policy based on previous data. The goal is to ensure
that if the agent is given a reward function r after the exploration phase it can find a good policy using its transition
model. Jin et al. (2020) formalize this goal as reducing the error:

o) Viai

where ” is the optimal policy in the estimated MDP ¥4 [ r. Note the striking similarity between this problem, and
the active IRL problem, we study in this paper. We want to reduce a similar error (cf. Definition 2), but we have
additional information about the reward in form of the expert policy.

The Reward-free UCRL algorithm, proposed by Kaufmann et al. (2021), is essentially analogous to AceIRL Greedy
(Section 6.1). Reward-free UCRL explores greedily with respect to an upper bound on the value function error.
However, the exploration policy needs to be updated after each episode to adapt to the new uncertainty estimates.
This might be expensive or not possible in practice. Instead, we could consider a batched version of reward-free
exploration, where in each iteration the agent explores for Ng episodes, similar to our Active IRL problem. In this
setting, a greedy policy w.r.t. uncertainty is suboptimal because it does not adapt to the reduced uncertainty over the
NEg episodes.

Instead, we can consider reducing the expected uncertainty at the next iteration, similar to our discussion in Section 6.2.
If our error estimate is denoted by E(S; a), we do no longer act greedily w.r.t. Ey. Instead we try to estimate the
error at the next iteration ék...l(s; aj ) as a function of the policy and try to select the policy that reduces this error.
In the tabular case, we can formulate this as a convex optimization problem, analogous to Appendix B.6. We call this
adaptation of AcelRL to the reward-free exploration problem Ace-RF.

Figure D.2 shows illustrative results of this algorithm in the batched reward-free exploration setting in the Double
Chain environment. We find that for larger batch sizes, choosing an exploration policy that reduces future uncertainty
is significantly better than reward-free UCRL.
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