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Abstract

Many currently deployed Reinforcement Learning agents work in an environment shared
with humans, be them co-workers, users or clients. It is desirable that these agents adjust
to people’s preferences, learn faster thanks to their help, and act safely around them. We
argue that most current approaches that learn from human feedback are unsafe: rewarding
or punishing the agent a-posteriori cannot immediately prevent it from wrong-doing. In
this paper, we extend Policy Gradient to make it robust to external directives, that would
otherwise break the fundamentally on-policy nature of Policy Gradient. Our technique,
Directed Policy Gradient (DPG), allows a teacher or backup policy to override the agent
before it acts undesirably, while allowing the agent to leverage human advice or directives
to learn faster. Our experiments demonstrate that DPG makes the agent learn much faster
than reward-based approaches, while requiring an order of magnitude less advice.

. Keywords: Policy Shaping, Human Advice, Policy Gradient

1. Introduction

To promote harmonious human-agent cohabitation, it is crucial for Reinforcement Learning
agents to conform and self-adjust to their users’ preferences and requests quickly. Learning
from human intervention not only allows users to customize the behavior of their agent,
but can also help agents learn faster. Most current techniques learn from human-delivered
feedback: shaping the environmental reward by mixing it with human reward (Thomaz
and Breazeal, 2006; Knox and Stone, 2010), learning solely from human reward (Warnell
et al., 2017; Christiano et al., 2017; Mathewson and Pilarski, 2017), or directly shaping the
agent’s policy by mixing it with a human policy extracted from human feedback (Griffith
et al., 2013; MacGlashan et al., 2017). Feedback-based methods can effectively improve the
performance of the agent; however, it does not allow the teacher to immediately deflect the
agent’s behavior in case it acts undesirably or unsafely.

In this paper, we extend Policy Gradient to allow human-provided advice to change
which actions are selected by the agent. Our main contribution, Directed Policy Gradient
(DPG), makes it possible for an advisory policy πH to directly influence the actions selected
by a Policy Gradient agent, a practice originally restricted to off-policy algorithms only
(Fernández and Veloso, 2006). Moreover, it empowers users by allowing them to take control
of the agent whenever they judge necessary. In contrast to value-based methods such as
SARSA and Q-Learning, Policy Gradient is able to ignore deterministic (i.e., orders) and
stochastic (i.e., soft suggestions) incorrect advice, which is crucial in ensuring that the
agent learns the best-possible policy regardless of the advice it receives (see our in-depth

c©2018 Hélène Plisnier, Denis Steckelmacher, Tim Brys, Diederik M. Roijers, Ann Nowé.
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discussion in Section 4). We empirically demonstrate the properties of DPG on a challenging
navigation task, and compare it to reward-shaping. Finally, although we consider here that
the advisory fixed policy comes from a human, DPG is generalizable to any source of
advisory policies, such as other agents, backup policies, or safe but sub-optimal expert
policies.

2. Background

In this section, we formally introduce Markov Decision Processes (MDPs), Policy Gradient,
and how probability distributions (in our case, policies) are combined.

2.1 Markov Decision Processes

A discrete-time Markov Decision Process (MDP) (Bellman, 1957) with discrete actions is
defined by the tuple 〈S,A,R, T 〉: a possibly-infinite set S of states; a finite set A of actions;
a reward function R(st, at, st+1) ∈ R returning a scalar reward rt for each state transition;
and a transition function T (st+1|st, at) ∈ [0, 1] taking as input a state-action pair (st, at)
and returning a probability distribution over new states st+1.

A stochastic stationary policy π, with π(at|st) ∈ [0, 1] the probability of action at to
be taken in state st, maps each state to a probability distribution over actions. At each
time-step, the agent observes st, selects at sampled from the state-dependent probability
distribution over actions π(st), then observes rt+1 and st+1. The (st, at, rt+1, st+1) tuple
is called an experience tuple. An optimal policy π∗ maximizes the expected cumulative
discounted reward Eπ∗ [

∑
t γ

trt]. The goal of the agent is to find π∗ based on its experiences
within the environment.

2.2 Policy Gradient

Policy Gradient methods (Williams, 1992; Sutton et al., 2000) explicitly learn a policy
πθ parametrized by a weights vector θ. The agent’s goal is to maximize the expected
cumulative discounted reward Eπ[

∑
t γ

trt], which consists in minimizing the following loss
(Sutton et al., 2000):

L(π) = −
T∑
t=0

Rt log(πθ(at|st)) (1)

where at ∼ π(st) is the action executed at time t. The return Rt =
∑T

τ=t γ
τrτ , with

rτ = R(sτ , aτ , sτ+1), is a simple discounted sum of future rewards. Intuitively, the loss
leads to the probability of past actions with the highest return to be executed more often in
the future, leading to a constantly improving policy. At every training epoch, experiences
are used to compute the gradient ∂L

∂θ of Equation 1, then the weights of the policy are
adjusted one step in the direction of the gradient. Policy Gradient is said to be strongly
on-policy : it only converges if the actions executed by the agent are drawn from the exact
probability distribution produced by π, which prevents any form of explicit exploration or
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advice.1 Our main contribution, DPG, overcomes this issue by allowing advice to directly
influence π(st), without any convergence issue.

2.3 Mixing Policies

Policy Shaping allows the agent’s learned policy πL(st) to be influenced by another advisory
fixed policy πH(st). The agent then samples actions from the mixture of the two policies,
π(st), as follows (Griffith et al., 2013):

at ∼ π(st) =
πL(st) × πH(st)∑

a∈A πL(a|st) × πH(a|st)
(2)

Even if first proposed for integrating collected human feedback in the learning process
(Griffith et al., 2013), this simple method can be applied to a larger variety of problems.
In addition to a human teacher, the advisory policy πH(st) can be a backup policy that
prevents the agent from behaving undesirably, another’s agent policy from which knowl-
edge is transferred, or a policy to imitate. In this paper, we consider the setting where a
(simulated) human provides deterministic advice to the agent, which forces its policy π to
choose certain actions.

3. Directed Policy Gradient

DPG assumes a parametric policy represented by a neural network with two inputs: the
state st and an advice πH . The state is used to compute a probability distribution πL over
actions, using dense, convolutional, or any other kind of trainable layers. Then, the output
π of the network is computed by element-wise multiplying πL and πH (see Section 2.3),
resulting in a mixture of the agent’s policy and the advisory policy, from which actions can
be directly sampled. In this neural architecture, inspired from how variable action-spaces
are implemented in Steckelmacher et al. (2018), the behavior of the agent can be directly
altered by a teacher or a backup policy, while conventional Policy Gradient requires the
actions taken to be exclusively sampled from the policy π (Sutton et al., 2000). Moreover,
our experimental results in Section 5 demonstrate that DPG is able to leverage advice to
learn faster, instead of merely obeying instructions and then learning as if nothing happened.

More specifically, the policy over actions π is represented as a feed-forward neural net-
work (with one hidden layer of 100 neurons in our experiments), trained using Policy Gra-
dient (Sutton et al., 2000) and the Adam optimizer (Kingma and Ba, 2014). The neural
network π takes two inputs: s the state observed from the environment, and a πH proba-
bility distribution over actions used for Policy Shaping. If no advice is available, πH is set
to the uniform distribution, which cancels its effect and allows Policy Gradient to learn as
usual. The output of the π network is computed as follows:

1. Our testing revealed that even PPO (with discrete actions), much more robust and advanced than simple
Policy Gradient, diverges when the slightest amount of off-policy directives override its behavior.
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Advice: π(a2 | s2) = 1

Figure 1: 2-state and 2-action environment. Incorrect deterministic advice forces the agent,
in state s2, to take the sub-optimal action a2. In this setting, Q-Learning still
associates a large Q-Value to s2, while Policy Gradient and SARSA are able to
learn to execute a1 in s1, in order to avoid the consequences of bad advice.

h1 = tanh(W1s + b1),

ŷ = σ(W2h1 + b2) ◦ πH,

y =
ŷ

1Tŷ
,

with Wi and bi the weights and biases of layer i ∈ [1, 2], σ the sigmoid activation
function, and ◦ denoting the element-wise product of two vectors. The network is trained
using the standard Policy Gradient loss shown in Equation 1 (Sutton et al., 2000). We now
demonstrate the applicability of DPG to various settings, and illustrate how much less hu-
man interventions are needed for DPG to be useful, compared to reward-based approaches.

4. Ignoring phony advice

We illustrate, using a simple example in Figure 1, that Policy Gradient, in contrast to
value-based methods such as Q-learning and SARSA, can ignore phony advice. This must
be shown for two cases: either the erroneous advice is deterministic (i.e., the agent has no
choice but to follow the advice), or stochastic (i.e., the advised action is non-mandatory).

4.1 Deterministic Advice

Deterministic advice is such that the advisory fixed policy πH(st) has a 1 for a particular
action (the one that the agent is forced to take), and a 0 for all other actions. Consider
the two-states and two-actions environment shown in Figure 1. In each of the two states
s1, s2, the same two actions are available to the agent, a1 and a2. In state s1, choosing
action a1 results in a positive reward of 1; choosing a2 results in a zero reward, and makes
the agent transition to state s2. In s2, choosing a1 results in a positive reward of 10, while
choosing a2 results in a negative reward of −10. Without deterministic advice, Q-learning,
SARSA and Policy Gradient learn the optimal policy, which is to select a2 in s1, then a1

in s2, hence collecting the +10 reward. Now, consider that phony deterministic advice is
introduced, forcing the agent to select a2 in s2. Since the agent has no choice but to follow
the deterministic advice once in s2, the only way to avoid the -10 reward is to not transition
to s2, by choosing action a1 in s1.
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Let’s consider the Q-Learning and SARSA update rules:

QQk+1(st, at) = QQk + α(rt + max
a′

QQk (st+1, a
′)−QQk (st, at))

QSk+1(st, at) = QSk + α(rt +QSk (st+1, at+1)−QSk (st, at))

If we apply these rules until convergence, and focus on state s1, we obtain two Q-Values
for Q-Learning, and two for SARSA:

QQ(s1, a1) = 1

QQ(s1, a2) = 0 + max
a′

QQ(s2, a
′) = 10

QS(s1, a1) = 1

QS(s1, a2) = 0 +QS(s2,

advice︷︸︸︷
a2 ) = −10

Hence, even though it is systematically forced to collect the negative reward of -10 in
state s2, the greedy policy of Q-Learning keeps on selecting action a2 in state s1. On the
other hand, SARSA is able to learn the effect of the advice, which leads to the better a1

action to be selected. Policy Gradient also learns the correct policy, because it relies on
returns. In state s1, R = 1 for action a1, and R = 0− 10 for action a2. The learned policy,
by maximizing the return, therefore converges towards deterministically choosing a1 in s1.

4.2 Stochastic Advice

The previous sub-section shows that Q-Learning is not robust to deterministic incorrect
advice. We now consider the stochastic advice setting, in which a non-zero probability is
assigned to all the actions, and show that SARSA fails to robustly learn the optimal policy,
while Policy Gradient manages to do so.

Value-based methods require explicit exploration, usually ε-Greedy or Softmax. That
explicit exploration, even for arbitrarily small epsilons or temperatures, prevents the policy
followed by the agent from becoming fully deterministic. Without loss of generality, we
now focus on SARSA with ε-Greedy. Let’s consider a one-state s and two-actions a1, a2

environment; choosing action a1 results in a reward of 1; choosing a2 results in a reward
of 0. We denote that as a return vector {1, 0}. An ε-Greedy agent easily learns a policy
πL(s) = {1−ε, ε}, that is mixed with a phony stochastic advice πH(s) = {0.01, 0.99}. Given
the policy mixing Equation 2 (in Section 2.3), πH(s) and πL(s) are mixed as follows:

π(s) =

{
(1− ε)× 0.01

(1− ε)× 0.01 + ε× 0.99
,

ε× 0.99

(1− ε)× 0.01 + ε× 0.99

}
=

{
0.01− 0.01× ε
0.01 + 0.98× ε

,
0.99× ε

0.01 + 0.98× ε

}
Given an ε > 0, the suboptimal action a2, leading to a 0 reward, will be taken with a

non-zero probability. For instance, that action will still be taken with a probability of 10%
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Figure 2: Comparison between a) our 29×27 Five rooms environment on which we evaluate
our method and b) the 11×11 Four rooms environment (Sutton et al., 1999) which
inspired Five Rooms. In a), black cells represent walls; the agent starts in cell S,
and must reach the goal-cell G.

if ε = 0.001, an unrealistic ε value for any real-world application. Hence, Q-learning and
SARSA are unable to ignore phony stochastic advice.

The policy learned by Policy Gradient, on the other hand, is deterministic when con-
verged, resulting in πL(s) = {1, 0}. Hence, the mixing of πL(s) with the stochastic advisory
policy πH(s) = {0.01, 0.99} leads to π(s) = {1, 0}. This way, Policy Gradient shows robust-
ness in the face of phony advice, in both its deterministic and stochastic form.

5. Experiments

The evaluation of our method takes place in the Five Rooms grid world environment (see
Figure 2a), inspired from the well-known Four Rooms (Sutton et al., 1999) (in Figure 2b).
Its sheer size (29×27 cells) and the fact that each room is accessible via tiny (one-cell wide)
doors make exploration difficult. The agent starts in the top-left corner of the grid, and
must reach the bottom right corner, where it receives a reward of +100. The agent’s policy
chooses amongst 5 macro-actions: one per door, driving the agent directly to that door
from any cell in a neighboring room; the fifth macro-action goes to the goal from any cell
of the bottom room. If the chosen macro-action is defined for the agent’s current position
(for example, considering one of the 4 door-macro-actions, if the agent is in a room directly
accessible from that door), it leads directly to its destination. Otherwise, the macro-action
moves the agent to a random neighboring cell before returning control to the policy over
macro-actions. As a result, the agent visits potentially every cell of the grid, instead of just
hopping from door to door, which keeps the problem challenging. After having executed
a macro-action, the agent receives the sum of the rewards associated to each individual
cell (−0.1 for every non-goal cell). The episode terminates either once the goal has been
reached, or after 500 unfruitful time-steps. The optimal policy takes 54 time-steps to reach
the goal, and obtains a cumulative reward of 100 − 54 × (−0.1) = 94.6. Our use of a
complicated environment with sparse rewards, and of macro-actions, is motivated by the
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Figure 3: Left: comparison between Policy Gradient (PG) with human advice (PG + Hu-
man Advice) and with human reward (PG + Human Reward). Both human
advice and reward are given to the agent with a probability L = 0.05, corre-
sponding to roughly 1000 human interventions for 1000 episodes. Human advice
leads to the highest returns, and improves the performance of the agent right
from the start. Right: 700 pieces of human advice, with L = 1, versus 10,000
reward-based punishments, with L = 1. Even though a far higher amount of re-
ward is provided, human advice eventually matches, then slightly exceeds human
reward.

nature of real-world robotic tasks in human-populated environments, that are big, complex,
and already rely on macro-actions.

In our experiments, we simulate human-provided advice using a deterministic function.
To design this function, we got inspiration from a small sample of actual people giving
advice to a learner. Before the agent chooses a macro-action, the human teacher will tell it
which one to choose with an availability probability 0 ≤ L ≤ 1. The probability of advice to
be correct is modeled by 0 ≤ P (right) ≤ 1; a wrong advice consists in the teacher advising
the agent to take the door leading to the middle left room, which takes the agent away
from the direct path to the goal. Human advice is represented as a probability distribution
over macro-actions, with a probability 1 for the action that the human wants the agent to
execute, and 0 for every other action. The πH(st) advice is then mixed to the learned policy
πL(st), as detailed in Section 3.

5.1 Directed Policy Gradient and Reward Shaping

We compare DPG to simple Policy Gradient with reward shaping, and Policy Gradient
without any form of human intervention. Human-provided reward with probability L = 0.05
(resulting in approximatively 1000 human interventions over 1000 episodes) is simulated
using a deterministic function. Knowing the optimal policy over macro-actions, it rewards
(by giving 0) or punishes (by giving -5) the agent if the macro-action chosen is the correct
one according to the agent’s current position. The numerical human reward is then added
to the environmental reward. Although it is not potential-based, this does not prevent the
agent from learning the task; and making it potential-based (Harutyunyan et al., 2015)
would require modeling the human’s reward function, which might alter it. Human advice
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is given to DPG with the same probability L = 0.05, which also results in about 1000
human interventions over 1000 episodes.

Results in Figure 3, left, show that, in the beginning, the performance of the agent
is not improved by human reward (p=0.419); however performance seems to be slightly
improved towards the end of the 1000 episodes (p=0.007). On the other hand, DPG leads to
much higher returns early on (p=1.369e-03), and continues to dominate reward shaping and
simple Policy Gradient until the end of the 1000 episodes (p=2.396e-09). This experiment
shows that, in contrast to reward-based methods, even a small amount of human advice
significantly improves the agent’s performance. The next experiments explore the behavior
of DPG when various amounts of human advice is given.

5.2 Non-Stationary Advice

In many real-world settings, humans are not always available to help the agent learn. In
Figure 3, right, we compare human advice, interrupted after 700 interventions, to human
reward, interrupted after 10,000 punishments (so, much more than 10,000 time-steps during
which the human had to watch the agent). This mimics an intense training period, followed
by an abrupt interruption of human help, which assesses the robustness of the agent to
sudden changes in human intervention.

Once the 10,000 human punishments have been consumed, the performance of Policy
Gradient with human reward slightly decreases, then plateaus until the end. Using only 700
pieces of advice, DPG manages to learn a policy marginally better than the one obtained
with reward shaping, even if reward shaping requires one order of magnitude more human
dedication. Furthermore, DPG is simpler to implement (see Section 3) than reward shaping,
which ideally requires a potential-based reward function to be designed (Ng et al., 1999;
Harutyunyan et al., 2015) to avoid biasing the learned policy.

6. Conclusion and Future Work

This paper presents Directed Policy Gradient, an extension of Policy Gradient that allows an
advisory policy πH to directly influence the actions selected by the agent. We illustrate DPG
in a human-agent cooperation setting, where the advisory policy is defined by a human. We
show that DPG allows good policies to be learned from scarce advice, is robust to errors in
the advice, and leads to higher returns than no advice, or reward-based approaches. Finally,
although we used the example of a human advisory policy, and compared our work to other
human-based approaches, it is important to note that any advisory policy can be used to
shape a learner’s policy, such as expert demonstrations, policies to be distilled from other
agents, backup policies for Safe Reinforcement Learning, or a mix of all the above. DPG is
therefore a straightforward, effective, and widely applicable approach to policy shaping.
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nier, and Ann Nowé. Reinforcement learning in POMDPs with memoryless options and

9

http://papers.nips.cc/paper/7017-deep-reinforcement-learning-from-human-preferences.pdf
http://papers.nips.cc/paper/7017-deep-reinforcement-learning-from-human-preferences.pdf
http://papers.nips.cc/paper/5187-policy-shaping-integrating-human-feedback-with-reinforcement-learning.pdf
http://papers.nips.cc/paper/5187-policy-shaping-integrating-human-feedback-with-reinforcement-learning.pdf
http://papers.nips.cc/paper/5187-policy-shaping-integrating-human-feedback-with-reinforcement-learning.pdf
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v70/macglashan17a.html
http://proceedings.mlr.press/v70/macglashan17a.html
http://arxiv.org/abs/1703.01274
http://arxiv.org/abs/1703.01274


Plisnier, Steckelmacher, Brys, Roijers and Nowé
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