Information-theoretic policy search methods for learning versatile, reusable skills

Gerhard Neumann

University of Lincoln / University of Darmstadt
Some geography…

Lincoln?
Learning Complex Motor Skills

Case Study: Table-Tennis

Humans

Robots

More Autonomy in Learning:
• Efficient skill exploration
• Reactive skills
• Simultaneous learning of multiple skills
• Switching between skills

State-of-the art:
• Learn single skill (forehand)
• Predefined hitting plane
• Heavily depends on demonstrations
• Engineered skill activations
• Limited policy representations

Mülling + Peters
Reinforcement Learning (RL)
Reinforcement Learning (RL)

Learning: Adapting the policy $\pi(u|x)$ of the agent

Objective: Find policy that maximizes expected long term reward

$$J_\pi = \mathbb{E} \left[\sum_{t=0}^{T} r_t \mid u_t \sim \pi(\cdot|x_t) \right]$$
Movement Primitives

Parametrized trajectories:

$$\tau^* = q_{1:T}^* = f(w)$$

- Desired mean movement
- Followed by trajectory tracking controllers

Examples:

- Dynamic Movement Primitives (DMPs) [Ijspeert 2002]
- Probabilistic Movement Primitives (ProMPs) [Paraschos 2013]

Reinforcement Learning by Direct Policy Search:

$$\pi^* = \arg \max_\pi \int \pi(w) R(w) dw$$

$$R(w) = \mathbb{E} \left[\sum_{t=1}^{T} r_t \mid w \right]$$

- Find distribution $$\pi(w)$$ with maximum expected return $$R(w)$$
Information-Theoretic Direct Policy Search

Search distribution / parameter policy: \(\pi(w) = \mathcal{N}(w|\mu, \Sigma) \)

- **Mean:** Estimate of the maximum
- **Covariance:** Direction to explore

How to update?

- **Too moderate**
- **Too greedy**
- **About right**

Exploration-Exploitation tradeoff: immediate vs. long-term performance
How can we find a good update?

Information-theoretic policy update: incorporate information from new samples

1. Maximize return
 \[\arg \max_{\pi} \int \pi(w) R(w) dw \]

2. Bound information loss [Peters 2011]
 \[\text{s.t.:} \quad \text{KL}(\pi || \pi_{\text{old}}) \leq \epsilon \]
 Controls step-size for mean and covariance

Kullback Leibler Divergence:

\[\text{KL}(q || p) = \int q(w) \log \frac{q(w)}{p(w)} dw \]

- Information-theoretic similarity measure
- Non-negative
- Non-symmetric

Illustration: Distribution Update

Large initial exploration

Small initial exploration

26.05.2016 | Gerhard Neumann | EWRL 2016 | Barcelona | 9
Information-Theoretic Policy Update

Information-theoretic policy update: incorporate information from new samples

1. Maximize return
 \[
 \arg \max_{\pi} \int \pi(\omega) R(\omega) d\omega
 \]
 reduces variance too quickly

2. Bound information gain [Peters 2011]
 \[
 \text{s.t. } \text{KL}(\pi || \pi_{\text{old}}) \leq \epsilon
 \]

 \[
 H(\pi_{\text{old}}) - H(\pi) \leq \gamma
 \]
 loss in entropy

Entropy:

\[
H(p) = - \int p(\omega) \log p(\omega) d\omega
\]

- Measure for uncertainty

A. Abdolmaleki, ..., **G. Neumann**, *Model-Based Relative Entropy Stochastic Search*, NIPS 2015
Illustration: Distribution Update

No entropy loss bound

With bounded entropy loss
Solution for Search Distribution

Solution for unconstrained distribution: \(\pi(w) \propto \pi_{\text{old}}(w) \frac{\eta}{\eta + \omega} \exp \left(\frac{R(w)}{\eta + \omega} \right) \)

- \(\eta \) … Lagrangian multiplier for: \(\text{KL}(\pi \| \pi_{\text{old}}) \leq \epsilon \)
 \(\epsilon \to 0 \quad \Rightarrow \quad \eta \to \infty \quad \Rightarrow \quad \pi \to \pi_{\text{old}} \)
 \(\epsilon \to \infty \quad \Rightarrow \quad \eta \to 0 \quad \Rightarrow \quad \pi \to \text{greedy} \)

- \(\omega \) … Lagrangian multiplier for: \(H(\pi_{\text{old}}) - H(\pi) \leq \gamma \)
 \(\gamma \to 0 \quad \Rightarrow \quad \omega \gg 0 \quad \Rightarrow \quad \pi \to \text{more uniform} \)

Gaussianity needs to be „enforced“!

- Fit new policy on samples (REPS, [Daniel2012, Kupcsik2014, Neumann2014])
- Fit return function on samples (MORE, [Abdolmaleki2015])

A. Abdolmaleki, ..., G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015

26.05.2016 | Gerhard Neumann | EWRL 2016 | Barcelona | 12
Fit Return Function

Use compatible function approximation:
- Gaussian distribution: $\mathcal{N}(w|\mu, \Sigma) \propto \exp \left(-\frac{1}{2} w^T \Sigma^{-1} w + w^T \Sigma^{-1} \mu - \frac{1}{2} \mu^T \Sigma^{-1} \mu \right)$
 - quadratic
 - linear
 - const
- Match functional form: $\tilde{R}(w) = w^T A w + a^T w + a_0 \approx R(w)$
- Quadratic in w, but linear in parameters: $\theta_R = \{A, a, a_0\}$
- θ_R obtained by linear regression on current set of samples

Model-Based Relative Entropy Stochastic Search (MORE) : [Abdolmaleki 2015]

1. Evaluation: Fit local surrogate $\tilde{R}(w) \approx w^T A w + a^T w + a_0$
2. Update: $\pi(w) \propto \pi_{\text{old}}(w) \frac{\eta}{\eta + \omega} \exp \left(\frac{\tilde{R}(w)}{\eta + \omega} \right) \Rightarrow \pi(w) = \mathcal{N}(w|\mu^*, \Sigma^*)$

A. Abdolmaleki, …, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015
Skill Improvement: Table Tennis

Setup:
- Single ball configuration
- 17 movement primitive parameters (DMPs)

More Autonomy in Learning:
- Efficient skill exploration
- Reactive skill representations
- Simultaneous learning of multiple skills
- Switching between skills
Adaptation of Skills

Goal: Adapt parameters \mathbf{w} to different situations

- Different ball trajectories
- Different target locations

Introduce context vector \mathbf{s}

- Continuous valued vector
- Characterizes environment and objectives of agent
- Individual context per execution $\mathbf{s} \sim p(\mathbf{s})$

Learn contextual distribution $\pi(\mathbf{w}|\mathbf{s}) = \mathcal{N}(\mathbf{w}|M\phi(\mathbf{s}), \Sigma)$

Abdolmaleki, …, **Neumann**, *Model-Based Relative Entropy Stochastic Search*, NIPS 2015
Kupcsik, …, **Neumann**, *Data-Efficient Generalization of Robot Skills with Contextual Policy Search*, AAAI 2013
Adaptation of Skills

Contextual distribution update:

1. Maximize expected return
 \[\arg \max_{\pi} \mathbb{E}_p(s) \left[\int \pi(w|s)R(s, w)dw \right] \]
2. Bound expected information loss
 \[\mathbb{E}_p(s) \left[\text{KL}(\pi(\cdot|s)||\pi_{\text{old}}(\cdot|s)) \right] \leq \epsilon \]
3. Bound entropy loss
 \[H(\pi_{\text{old}}) - H(\pi) \leq \gamma \]

Contextual MORE: [Abdolmaleki 2015]

1. Evaluation: Fit local surrogate \(\tilde{R}(s, w) \approx w^T A w + a^T B \phi(s) + a^T w + a_0 \)
2. Update: \(\pi(w|s) \propto \pi_{\text{old}}(w|s)^{\eta+\omega} \exp \left(\frac{\tilde{R}(s, w)}{\eta + \omega} \right) \)
 \[\Rightarrow \pi(w|s) = \mathcal{N} \left(w|M^* \phi(s), \Sigma^* \right) \]

A. Abdolmaleki, …, G. Neumann, Model-Based Relative Entropy Stochastic Search, NIPS 2015
Adaptation of Skills: Table Tennis

Contextual Policy Search:

- Context: Initial ball velocity (in 3 dimensions)
- Successfully return 100% of the balls
Reactive Skills

Goal: React to unforeseen events
- **Adaptation during execution** of the movement
- **Add perceptual variables** to state representation x
- E.g.: ball position + velocity

Approach:
- Learn and explore in action space
- **No linearizations of dynamics**

Example: Perturbation at impact (spin)

Learn time-dependent feedback controllers

$$\pi_t(u|x) = \mathcal{N}(K_t x + k_t, \Sigma_t)$$
Policy Evaluation

Time-Dependent Local Value Function Approximation

- **V-Function:**
 Quality of state s when following policy π

$$V_t^\pi(x) = \mathbb{E}_\pi \left[\sum_{h=t}^{T} r_h(x_h, u_h) \middle| x_t = x \right] \approx x^T V_t x + x^T v_t + v_{0,t}$$

- **Q-Function:**
 Quality of state s when taking action a and following policy π afterwards

$$Q_t^\pi(x, u) = \mathbb{E}_\pi \left[\sum_{h=t}^{T} r_h(x_h, u_h) \middle| x_t = x, u_t = u \right] \approx a^T Q_t a + a^T B_t x + a^T q_t + q_{0,t} + f_t(x)$$

- Estimated by linear regression
Policy Improvement

Policy Improvement per Time-Step:

1. Maximize Q-Function
 \[
 \arg \max_{\pi_t} \mathbb{E}_{p_t(x)} \left[\int \pi_t(u|x) Q_{t}^{\pi_{old}}(x, u) du \right]
 \]

2. Bound expected information loss
 s.t.: \[
 \mathbb{E}_{p_t(x)} \left[\text{KL}(\pi_t(\cdot|x) || \pi_{t,old}(\cdot|x)) \right] \leq \epsilon
 \]

3. Bound entropy loss
 \[
 H(\pi_{t,old}) - H(\pi_t) \leq \gamma
 \]

Model-free Trajectory Optimization (MOTO): [Akour 2016]

1. Evaluation: Fit local Q-Function
 \[
 \tilde{Q}^{\pi_{old,t}}(x, u) \approx a^T Q_t a + a^T B_t x + a^T q_t + q_{0,t} + f_t(x)
 \]

2. Update:
 \[
 \pi_t(u|x) \propto \pi_{old,t}(u|x) \frac{\eta}{\eta + \omega} \exp \left(\frac{\tilde{Q}_{t}^{\pi_{old}}(x, u)}{\eta + \omega} \right)
 \]
 \[
 \Rightarrow \pi_t(u|x) = \mathcal{N}(u|K_t^* x + k_t^*, \Sigma_t^*)
 \]

Reactive Skills: Table Tennis

Reactive Skills:

- Returns ball 100% of the times
- Not possible with desired trajectories

More Autonomy in Learning:

- Efficient skill exploration
- Reactive skills
- Simultaneous learning of multiple skills
- Switching between skills
Skill Selection

Goal: Select skill given a context

- Forehand
- Backhand
- Smash...

Hierarchical Policy:

1. **Gating policy:** Select skill
 \[
 \pi(o|s)
 \]

2. **Single Skills:** Decide on controls
 \[
 \pi(w|s, o_1) \\
 \pi(w|s, o_2) \\
 \pi(w|s, o_3)
 \]
Hierarchical RL for Skill Selection

- Independent RL problems
- Estimate reward models using importance sampling
 \[\arg\min_{\tilde{R}} \int p(x, \theta | o) \left(\tilde{R}(x, \theta) - R(x, \theta) \right)^2 \]
 \[\approx \arg\min_{\tilde{R}} \sum_i p(x_i, \theta_i | o) \frac{p(x_i, \theta_i)}{p(x_i, \theta)} \left(\tilde{R}(x_i, \theta_i) - R_i \right)^2 \]
- Shared experience
- Similar update strategy can be used for gating layer

Learned Skills

More Autonomy in Learning:
- Efficient skill exploration
- Reactive skills
- Simultaneous learning of multiple skills
- Switching between skills
Skill Activation

Full game:
• No fixed horizon
• When to *activate which stroke*?
• When to *terminate*?

Use Options / Option Discovery!

Ongoing work: concentrate on easier problem

Existing approaches [Simsek, McGovern, Konidaris]:
• Find „Bottlenecks“ in the state space
• Chaining of goal states
 ✓ Transfer Learning
 ✗ Often limited to discrete domains
 ✗ Need to know the MDP

Probabilistic Inference [Daniel2016]:
• Graphical model with latent variables
• Parametric policies at all levels
 ✓ Continuous domains
 ✓ Combine simple controllers
Hierarchical Policy [Sutton2000]:

- **Initiation policy:**
 \[\pi(O_t | x_t) \theta_O \]

- **Termination policy:**
 \[\pi(b_t | o_{t-1}, x_t, x; \theta_B^{[j]}) \]

- **Sub-policy:**
 \[\pi(u_t | x_t, \theta_A^{[j]}) \]

Parameters: \(\Theta = \{ \theta_O, \theta_B^{[1:K]}, \theta_A^{[1:K]} \} \)

C. Daniel, …, G. Neumann (2016): Probabilistic Inference for Determining Options in Reinforcement Learning, Machine Learning, best student paper ECML (journal track)
Hierarchical Imitation Learning

Imitation Learning:
- Optimize marginal log-likelihood:
 \[L(\Theta) = \sum_{o_{1:T}, b_{1:T}} \log p(x_{1:T}, u_{1:T}, o_{1:T}, b_{1:T} | \Theta) \]
- Latent variables: option index, termination event,
- Observed variables: states, actions

Expectation-Maximization
- **E-Step:** Compute responsibilities: \[p_t(\theta_O, b_{t:t+1}, o_{t+1} | x_{1:T}, u_{1:T}, \Theta_{old}) \]
- **M-Step:** Optimize lower bound \[\arg \max_{\Theta} \mathcal{L}(\Theta, q) \]
 - Initiation: \[\mathcal{L}_O(\theta_O, q) = \sum_t \mathbb{E}_{q_t} \left[\log \pi(o_t | x_t; \theta_O) \right] \]
 - Termination: \[\mathcal{L}_B(\theta_B^{[j]}, q) = \sum_t \mathbb{E}_{q_t} \left[\log \pi(b_t | x_t, o_{t-1}; \theta_B^{[j]}) \right] \quad o_{t-1} = j \]
 - Sub-Policies: \[\mathcal{L}_U(\theta_U^{[j]}, q) = \sum_t \mathbb{E}_{q_t} \left[\log \pi(u_t | x_t, o_t; \theta_U^{[j]}) \right] \quad o_t = j \]

Decoupled updates
Option Discovery for Reinforcement Learning

Probabilistic Reinforcement Learning:

- Compute weighting for each sample
 \[p_i = \exp \left(\frac{Q(x_i, u_i) - V(x_i)}{\eta} \right) \]

- Use **weighted maximum likelihood** for policy update

M-Step: Introduce weighting of data-points

- **Initiation:**
 \[\mathcal{L}_O(\theta_O, q) = \sum_t \mathbb{E}_{q_t} \left[\log \pi \left(\frac{Q(x_t, u_t)}{b_t = 1} \right) \log p_t(x_t, o_t; \theta_O) \big| b_t = 1 \right] \]

- **Termination:**
 \[\mathcal{L}_B(\theta_B^{[j]}, q) = \sum_t \mathbb{E}_{q_t} \left[\log \pi \left(\frac{Q(x_t, u_t)}{b_t = 1} \right) \log p_t(x_t, o_t; \theta_B^{[j]}) \big| o_t-1 = j \right] \]

- **Sub-Policies:**
 \[\mathcal{L}_U(\theta_U^{[j]}, q) = \sum_t \mathbb{E}_{q_t} \left[\log \pi \left(\frac{Q(x_t, u_t)}{b_t = 1} \right) \log p_t(x_t, o_t; \theta_U^{[j]}) \big| o_t = j \right] \]

Weighted maximum likelihood at each layer!
Option Learning Results

Grid-World:

![Graph showing performance comparison across different algorithms in a corridor world scenario.](image)

Pendulum Swing-Up:

![Graph showing performance across episodes for different methods.](image)

More Autonomy in Learning:

- Efficient skill exploration
- Reactive skills
- Simultaneous learning of multiple skills
- Switching between skills
More than Table Tennis

Hierarchical Grasp Learning:

The learned policy was tested with 10 objects on a real robotic system.

T. Osa
Conclusion: Motor Skill Learning

Efficient Motor Skills Learning:

- Efficient local search with Gaussian distributions
- Information-theoretic policy updates
- Versatile skills using information-theoretic objectives
- Learn hierarchical policies for skill selection by hierarchical RL

Future work:

- Application on the real robot
- Integrate switching between skills in MOTO framework
- Deep Networks and Perception
- More Layers for Hierarchical RL
Swarm Robotics

Kilobots:

- Massively parallel low cost robot
- 3 legs, rotate and move with vibration
- **Limited sensing** and communication
 - Light sensors
 - Sense distance to other Kilobots (< 7cm)
 - Own location and location of other Kilobots unknown

- Future of **molecular robotics**?

Applications:

- Cooperative Assembly
- Forming structures (graphs)
- Localizing targets
Learning for Swarm Robotics

Challenges:

- Varying number of agents
- High dimensional states
- Only local limited observations
- Need to cooperate

Reinforcement Learning on such systems is often infeasible

Applications:

- Cooperative Assembly
- Forming structures (graphs)
- Localizing targets
Centralized Control: Cooperative Assembly

Assemble 2 objects:
- Pushing them together
- Specified orientation

Task Decomposition
- Plan desired path for objects
- Push objects along path with object pushing policy

Object pushing policy:
- Learned with reinforcement learning
- Different desired rotation and translation

G. Gebhardt, …, G. Neumann: Learning to assemble objects with robot swarms, submitted to AAMAS 2017
Centralized Control: Cooperative Assembly

Learning object pushing policy:

- **State:**
 Distribution of Kilobots relative to object
 Invariance to number of kilobots

- **Action:**
 Movement of torch-light

- **Reward:**
 Achieve desired translation and rotation of object

- Learned with Actor-Critic REPS [Wirth, AAAI 2016]
Decentralized Control: Deep Guided Learning

Guided Learning:

- During learning, we know full state \(x \) (e.g. cameras)
- Policies can only use histories \(h \) of observations \(o \)
- Learning infeasible otherwise

Actor(s)-Critic Architecture:

- **Critic**: Learns full-state Q-Function \(Q^\mu_i(x, u_1, \ldots, u_N) \)
- **Actors/Policies**: Choose action due to local history \(u_i = \mu(h_i) \)

Deep representations for actors and critic

- Trained with Deep Deterministic Policy Gradients [Silver 2014]

M. Hüttenrauch, …, G. Neumann: Deep Guided Reinforcement Learning for Robot Swarms, submitted to AAMAS 2017
Decentralized Control: Deep Guided Learning

Observations:
- Histogram of distances to nearby agents

Task 1: Building graph-structures
- Edge: distance between kilobots = d
- Reward: maximize number of edges
Decentralized Control: Deep Guided Learning

Observations:

- Histogram of distances to nearby agents
- Distance to target (if seen)
- Flag if target has been reached

Task 2: Localizing Target

- Maximize number of Agents that have seen target
Conclusion: Multi-Agent Learning

Centralized control:

- Learning of complex task such as object assembly
- Invariance to number of agents: state as distribution of Kilbots

Decentralized control:

- Guided learning with full state information
- Can learn decentralized control policies

Future work:

- Implementation on real robots
- More complex objects, more complex tasks
- Communication, simulate pheromons
- Memory
Many thanks to...

My team:

IAS @ TUDa

Collaborations: