Stochastic POMDP controllers: How easy to optimize?

Nikos Vlassis
Luxembourg Centre for Systems Biomedicine, University of Luxembourg

Michael L. Littman
Dept. of Computer Science, Rutgers University / Brown University

David Barber
Department of Computer Science, University College London

Abstract

It was recently shown that computing an optimal stochastic controller in a discounted infinite-horizon partially observable Markov decision process is an NP-hard problem. The reduction (from the independent-set problem) involves designing an MDP with special state-action rewards. In this note, we show that the case of state-only-dependent rewards is also NP-hard.

Keywords: Markov decision process, POMDP, stochastic controller, NP-hardness.

1. Introduction

Consider the family of γ-discounted ($\gamma < 1$) infinite-horizon POMDPs with n states and k actions, a single observation (aka unobserved MDPs), state-action immediate costs (negative rewards) c_{sa}, transition model $p(\bar{s}|s,a)$, and starting distribution μ. An optimal stochastic ‘blind’ controller in such a POMDP is a vector $\pi^* = (\pi^*_a)$ in the probability simplex Δ that is a global minimizer of the following bilinear program:

$$\min_{\pi \in \Delta, x \geq 0} \sum_s x_s \sum_a \pi_a c_{sa}, \quad \text{s.t.} \quad x_{\bar{s}} = (1-\gamma)\mu_{\bar{s}} + \gamma \sum_a \pi_a \sum_s p(\bar{s}|s,a)x_s \quad \forall \bar{s}, \quad (1)$$

where $x = (x_s)$ is an occupancy distribution over states, and the objective is total discounted cost. Such bilinear programs are in general nonconvex and hence difficult to solve to global optimality. Moreover, an optimal π^* may involve irrational numbers (Littman, 1996).

2. The computational decision problem

The corresponding decision problem stochastic-blind-policy asks: Given a POMDP in the above family and a target cost r, is there a stochastic blind controller π that incurs cost $J(\pi) \leq r$? Here, $J(\pi) = x^T C \pi$ is the cost of controller π as given in (1), where $C = (c_{sa})$ is an $n \times k$ matrix containing all state-action costs. Vlassis et al. (2012) prove that the stochastic-blind-policy problem is NP-hard, reducing from the independent-set problem. They construct a special MDP with n states and n actions, uniform starting distribution μ, cost matrix $C = \frac{1}{\gamma}(G + I)$ where G is the $n \times n$ adjacency matrix of an input cubic graph and I is the identity matrix, and...
deterministic transitions \(p(\bar{s}|s,a) = 1 \) if \(\bar{s} = a \) and 0 otherwise. For that MDP, the cost of controller \(\pi \) can be shown to be \(J(\pi) = \frac{4(1-\gamma)}{n\gamma} + \pi^\top(G + I)\pi \), which involves a quadratic form in \(\pi \). If the target cost \(r \) is chosen carefully, a straightforward application of the Motzkin-Straus theorem (Motzkin and Straus, 1965) establishes the reduction. We refer to the above paper for details and additional results.

3. The case of state-only-dependent costs

In this note we establish the following:

Theorem 1 STOCHASTIC-BLIND-POLICY is NP-hard even for POMDPs with state-only-dependent costs.

Proof Consider the class of \(\gamma \)-discounted MDPs with discount factor \(\gamma = \delta^2 \), for rational \(\delta \in (0,1) \). It is easy to verify that STOCHASTIC-BLIND-POLICY remains NP-hard for this class of MDPs by recapitulating the proof of Vlassis et al. (2012). For any MDP \(\mathcal{M} \) in this class with state-action costs \(c_{sa} \), we will construct a \(\delta \)-discounted MDP \(\mathcal{M}' \) with state-only-dependent costs such that \(\mathcal{M} \) and \(\mathcal{M}' \) attain the same total discounted cost under any blind policy. The construction is as follows: \(\mathcal{M}' \) inherits all original states of \(\mathcal{M} \), plus it has one extra state for each state-action pair of \(\mathcal{M} \). From each original state \(s \), action \(a \) moves deterministically to the extra state \((s,a) \), and from the latter any action moves to original state \(s' \) according to the dynamics \(p(s'|s,a) \) of \(\mathcal{M} \). The costs of \(\mathcal{M}' \) are state-only-dependent: they are zero for all original states \(s \) and are equal to \(1+\frac{\delta}{\beta}c_{sa} \) for each extra state \((s,a) \). The starting distribution in \(\mathcal{M}' \) is the natural extension of the one in \(\mathcal{M} \), that is, it places zero mass on extra states \((s,a) \). Note that, in both MDPs, the process starts from each state with the same probability, but in \(\mathcal{M}' \) each trajectory is ‘twice as long’: there is always an intermediate extra state between two original states in a trajectory. Since \(\gamma = \delta^2 \), it is easy to verify that the two MDPs attain the same total discounted cost under any blind policy. Therefore, \(\mathcal{M} \) and \(\mathcal{M}' \) are equivalent, and a polynomial-time algorithm for deciding STOCHASTIC-BLIND-POLICY in \(\mathcal{M}' \) would imply a polynomial-time algorithm for deciding STOCHASTIC-BLIND-POLICY in \(\mathcal{M} \), which cannot be the case unless \(P=NP \).

Acknowledgments

We thank Peter Dayan and Matthijs Spaan for helpful discussions.

References

